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ABSTRACT
Although millions of users download and use third-party
Android applications from the Google Play store, little in-
formation is known on an aggregated level about these ap-
plications. We have built PlayDrone, the first scalable
Google Play store crawler, and used it to index and analyze
over 1,100,000 applications in the Google Play store on a
daily basis, the largest such index of Android applications.
PlayDrone leverages various hacking techniques to circum-
vent Google’s roadblocks for indexing Google Play store con-
tent, and makes proprietary application sources available,
including source code for over 880,000 free applications. We
demonstrate the usefulness of PlayDrone in decompiling
and analyzing application content by exploring four pre-
viously unaddressed issues: the characterization of Google
Play application content at large scale and its evolution over
time, library usage in applications and its impact on appli-
cation portability, duplicative application content in Google
Play, and the ineffectiveness of OAuth and related service
authentication mechanisms resulting in malicious users be-
ing able to easily gain unauthorized access to user data and
resources on Amazon Web Services and Facebook.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; C.4 [Performance of Systems]:
Measurement techniques; C.5.3 [Computer System
Implementation]: Microcomputers–Portable devices;
H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval–Information filtering; J.7
[Computers in Other Systems]: Consumer products;
K.6.2 [Management of Computing and Information
Systems]: Installation Management–Performance and us-
age measurement; K.6.5 [Management of Computing
and Information Systems]: Security and Protection–
Authentication
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1. INTRODUCTION
The Google Play store allows users to download and use

a vast amount of third-party applications. Millions of users
register personal information both with Google and third-
party services to download and use these applications on
their personal Android phones and tablets. Hundreds of
thousands of developers upload content to the Google Play
store and millions of users download the content despite the
fact that the content is largely unchecked.

However, little is known at an aggregate level about the
hundreds of thousands of applications available in the Google
Play store. This is due in large part to the lack of scal-
able tools available for discovering and analyzing Android
applications in the Google Play store. Application source
code is also only available to the respective third-party de-
velopers. Not even Google has access to the source code,
as applications are submitted directly as compressed binary
packages by application developers to Google Play. Fur-
thermore, Google imposes various mechanisms to prevent
others from crawling and indexing Google Play store con-
tent. For example, discovery of applications in the Google
Play store is limited as only the first 500 applications be-
longing to any category or matching any search term can be
found by browsing the store’s web interface. Some applica-
tions also require specific hardware features or other existing
applications and libraries to be available on the end-user de-
vice. Such applications are only available if the Google Play
interface is accessed with an account registered on a device
with the prerequisites available.

To explore Google Play content, we have created Play-
Drone, the first scalable Google Play store crawler and ap-
plication analysis framework. PlayDrone uses four key
techniques. First, PlayDrone leverages common hacking
techniques to easily circumvent security measures that Google
uses to prevent indexing Google Play store content. These
techniques include simple dictionary-based attacks for dis-
covering applications, and decompiling and rebuilding the
Google Play Android client to use insecure communication
protocols to communicate with the Google Play servers to
capture, understand, and reproduce the necessary protocols.
Second, PlayDrone leverages higher-level languages and
frameworks to provide highly concurrent, distributed pro-
cessing with modest implementation effort. PlayDrone
is written in Ruby and uses the Sidekiq [31] asynchronous



processing framework and the Redis [33] key-value store.
Its performance scales easily by simply adding servers to
the cluster, enabling PlayDrone to efficiently crawl the
Google Play store on a daily basis even as its content con-
tinues to grow. Third, PlayDrone stores each applica-
tion’s metadata and decompiled sources in a Git repository.
This provides a simple versioning system for PlayDrone
to track and manage multiple versions of each application
and analyze how Google Play store content evolves over
time. Finally, PlayDrone leverages the Elasticsearch [19]
distributed real-time search and analytics engine using an
indexing schema based on the Google Play store API to
make it easy to analyze and explore the Google Play store
metadata and content.

We have used PlayDrone to crawl the Google Play store
and analyze over 1,100,000 Android applications, including
decompiling the source code for over 880,000 free Android
applications and analyzing over 100 billion lines of decom-
piled code. We demonstrate the usefulness of PlayDrone
for analyzing application content by exploring four previ-
ously unaddressed issues in understanding Android applica-
tions. First, we provide a characterization of Google Play
application content at scale. We discuss the relationship be-
tween application ratings and download frequency, discuss
how applications are categorized in Google Play and how the
choice of self-categorization can affect application visibility.
We show how Google Play store content evolves over time,
providing a measure of how often applications are released,
updated, and removed. We also show that a small percent-
age of free applications account for almost all downloads.

Second, we perform the first large-scale source code anal-
ysis of library usage in Android applications. We show how
library usage differs between popular and unpopular applica-
tions, including that native libraries are heavily used among
the most popular applications. As a result, Android systems
which only support Java-based applications are inadequate
to support the most widely-used Android applications [12,
40]. We show that over half of the free Android applications
use advertising libraries and discuss the size of the differ-
ent advertising networks. We also show that cross-platform
frameworks and application generators make up a very small
fraction of the overall Google Play application content.

Third, we describe a new simple approach for efficiently
detecting similar Android applications in the Google Play
store. We use the structure of Android applications to an-
alyze similarity by considering application assets and re-
sources rather than requiring detailed source code analysis.
This provides a more scalable approach than code analy-
sis approaches with comparable results. Our results show
that roughly 25% of Google Play store application content
is duplicative, including various types of spam, application
rebranding, and application cloning.

Finally, we present the first study of secret authentication
key usage and its problems in Android applications. We
show that developers often store secret authentication keys
in their Android applications without realizing their creden-
tials are easily compromised through decompilation. These
secrets are publicly available in Google Play. We show these
keys can be used by malicious users to steal server resources
or user data available through services such as Amazon Web
Services (AWS) or Facebook. Unlike compromised applica-
tions that only affect users who download and run them,
these server vulnerabilities affect users without even run-

ning the applications. Our results demonstrate developer
confusion may subvert the effectiveness of the widely used
OAuth open source standard for authentication. We notified
and worked with service providers to prevent these attacks,
including providing Google with code to help them scan for
secret keys in applications as part of the Google Play appli-
cation publication process to protect users and developers.

This rest of this paper is organized as follows. Section 2
describes how PlayDrone intefaces with the Google Play
API. Section 3 describes the PlayDrone crawler architec-
ture. and Section 4 measures its scalable performance. Sec-
tion 5 characterizes Android applications in Google Play.
Section 6 discusses library usage in Android applications.
Section 7 describes our approach for efficiently detecting
similar Android applications and our measurements of simi-
larity among applications in Google Play. Section 8 presents
a study of secret authentication key usage and its problems
in Android applications. Section 9 discusses related work.
Finally, we present some concluding remarks.

2. INTERFACING WITH GOOGLE PLAY
To crawl the Google Play store, PlayDrone needs to

communicate with the Google Play store, which requires
use of a Google account for all the necessary functionality.
Using only a few Google accounts to crawl the entire store
might risk having the accounts disabled by Google, so we
decided to harvest a large number of Google accounts. To
do this quickly and efficiently, we had to address two prob-
lems. First, registering for a Google account requires solv-
ing CAPTCHAs. Second, registering for a Google account
requires phone verification when the same IP attempts to
register more than five accounts on a given day.

We addressed both issues by using a crowdsourcing Inter-
net marketplace service to cheaply use other human users to
register for Google accounts from a diverse set of IPs. Any
such service could be used, including dedicated CAPTCHA
solver services such as Death by Captcha [15]. We used
Amazon’s Mechanical Turk [1] for this purpose and deployed
a website, http://playdrone.io, for users to submit the
registered Google account information back to us. Mechan-
ical Turk is a service where registered users are paid small
dollar amounts to carry out trivial manual jobs. We posted a
task description on Mechanical Turk with the following sim-
ple instructions: (1) Start your browser in incognito/guest
mode. (2) Go on https://accounts.google.com/SignUp.
(3) Fill out the requested information except “Mobile phone”
and “Current email address” as they are not necessary. (4)
Go to http://playdrone.io/accounts/new and enter the
email and password of the account you created. (5) Answer
with the returned confirmation code. The return confirma-
tion code allows the user to be paid for the work. Before the
code is given, playdrone.io validates the submitted Google
account information to ensure that it is not duplicative and
can authenticate with Google services. Mechanical Turk
prevents users from carrying out the same task twice, so
four copies of the task were created to benefit from dedi-
cated users. We paid 10 cents per account, resulting in the
creation of more than 500 Google accounts in just a few
hours for a little more than $50. Note that Google accounts
can be found on the black market for a similar price.

Google exposes an internal, non-documented API to its
Android Play clients to access the store and download ap-
plications over the air. PlayDrone replicates the behav-



ior of legitimate Android Play clients, each using a pre-
viously harvested Google account associated with Galaxy
Nexus device profiles. PlayDrone interacts with Google
Play servers through four different APIs. The first one is
the checkin API to associate a Google account with an An-
droid device, necessary to access the three other Google Play
APIs. Based on the device used, Google Play may make
available a different set of applications for the device. For
example, some applications may only be available to de-
vices in certain geographic locations. The search, details,
and purchase APIs are used to discover applications, fetch
application details, and retrieve binary download links, re-
spectively. We were fortunately able to leverage additional
information from non-Google sources [34, 24] to implement
most of the APIs.

However, because of the lack of documentation and source
code for the checkin API and our desire to make use of mul-
tiple Google accounts efficiently, we had to reverse engineer
that API ourselves. Google makes it difficult to derive the
checkin API by ensuring that communications between the
Google Play client and servers are over SSL, preventing the
capture of the wire protocol. However, since the Google
Play client and related service applications are compiled to
Dalvik bytecode, they were straightforward to disassemble
with baksmali [26]. We changed all https strings to http

ones and recompiled the client to send and receive unen-
crypted communications via an SSL proxy to the Google
Play servers. This man-in-the-middle attack allowed the
capture of a real device registration over the wire and the
ability to reproduce it to reverse engineer the checkin API.
Based on this API, we created a tool to register a fake An-
droid device given an email password pair corresponding to
a Google account. During the registration process, device
capabilities and metadata need to be sent to the Google
servers, including more than 50 data fields such as the mo-
bile network provider, an IMEI number, the WiFi MAC
address, and OpenGL capabilities. We extracted this infor-
mation from a legitimate T-Mobile Galaxy Nexus device; all
of our search results are therefore restricted to what would
be accessible on such a device. The tool then uses this in-
formation, but randomly generates valid IMEI and MAC
addresses to prevent device blacklisting by Google. A simi-
lar approach could be used for reverse engineering the other
APIs if needed.

3. CRAWLER ARCHITECTURE
Given a set of Google accounts and the APIs for com-

municating with the Google Play servers, the PlayDrone
crawler discovers and downloads Android applications with
their metadata. Figure 1 shows the six components of the
PlayDrone crawler architecture: a Sidekiq job scheduler
for distributing work to multiple machines, a Redis key-
value store to store the jobs, an Amazon EC2 proxy, Git ver-
sion control repositories, an Elasticsearch distributed search
and analytics engine, and an Nginx web server frontend.
These components work together to provide four key ben-
efits. First, since crawling and analyzing the evolution of
Google Play on a daily basis requires a fair amount of CPU
power and storage space, PlayDrone is designed using a
higher-level language that makes it simple to build a pow-
erful distributed system that scales out by just adding more
servers. PlayDrone is written in Ruby, which provides an
excellent higher-level language ecosystem that is simple to

Figure 1: PlayDrone crawler architecture.

use and allows PlayDrone to leverage existing, well-tested
mechanisms such as Sidekiq, Redis, and Elasticsearch to fur-
ther simplify its implementation. Second, to circumvent at-
tempts by Google to limit crawling of the Google Play store,
PlayDrone uses various techniques to hide its activities,
including using multiple Google accounts, rate limiting the
number of requests for each account, and proxying requests
through a third-party service provider. Third, to analyze the
behavior of the Google Play store and its applications over
time, PlayDrone leverages Git to store and track multiple
versions of each Android application and metadata to allow
the system to analyze how applications evolve as they are
updated from one version to another. Finally, PlayDrone
is designed with an easy-to-use web interface supported by
Nginx and Elasticsearch to make it simple to search and per-
form various forms of analysis on the Android applications
and their metadata. For example, Figure 2 shows the use
of PlayDrone to identify how the Gmail application code
has been updated.

PlayDrone uses the Redis key-value store [33] and the
Sidekiq background processing framework [31] to efficiently
implement master-slave distributed computing. Sidekiq as-
signs jobs to different slave machines. PlayDrone uses two
Sidekiq job queues, one for discovering Android applications
in Google Play, and the other for downloading and process-
ing applications. Redis runs on a master machine to store
the job queues and track the use of Google accounts, which
applications need to be processed, and what machines have
been assigned to process which applications. Although only
a single master machine is used, PlayDrone leverages Re-
dis very efficiently so that the architecture can scale out to
support hundreds of slave worker machines.

Discovering applications in Google Play is not straight-
forward because Google does not provide any public list
of all the available applications in Google Play and limits



Figure 2: PlayDrone’s web interface showing the Gmail application and its Git diff.

the search results returned from querying Google Play to
no more than 500 applications. To overcome these prob-
lems, PlayDrone uses a dictionary attack method involv-
ing roughly a million words as search terms to search Google
Play to find applications. To cover a broad range, words
are used from multiple languages, including English, Ger-
man, French, Spanish, Swahili, Japanese, Italian, Danish
and Swedish. A Sidekiq job is created for each search term,
making the discovery queue roughly a million jobs in length.
For each search job, PlayDrone sends a search request to
Google Play through its proxy. Because each search request
is a separate job, requests that need to be retried are iso-
lated in the event of a network issue or other problem. It is
interesting to note that the Google Play API does not return
any search results when hit directly from the PlayDrone
servers in Canada, but proxying the connection through an
Amazon EC2 public IP in North Virginia causes the API to
successfully return results. We do not know if the IPs we
are using are banned, or if the filtering is based on IP geolo-
cation, but this anecdotal evidence demonstrates the benefit
of our proxy approach. For each search request, Google Play
returns a list of applications in batches of 20 applications,
with a link to the next page if there are more results to be
fetched; the pagination stops at 500 results. Each appli-
cation in the list includes a link to a details page for the
application, which provides a description of the application.
When PlayDrone finds an application that it has not seen
before, it stores the application unique identifier in Redis,
and adds the application to the Sidekiq processing queue to
be downloaded.

When a new application identifier is discovered, Play-
Drone downloads and processes the application. Play-
Drone uses Redis to atomically assign the application to
a machine for processing and instantiates a Git repository
for the application on the assigned machine. PlayDrone
fetches the application’s details page, from which it extracts
all of the application’s metadata and downloads and stores
the application binary package (APK) into its Git reposi-
tory. Application metadata includes a list of related appli-
cations, which PlayDrone uses to discover applications not
identified via the dictionary-based method. Only free appli-
cation APKs are downloaded to avoid the costly expense of
downloading all paid applications. Future processing of the
application is done on the machine where its Git repository

resides. This simple distribution mechanism takes better
advantage of file locality as opposed to relying on a dis-
tributed file system, which would result in much worse file
system performance using Git and would add unnecessary
complexity to the system.

PlayDrone provides a plugin architecture to allow a user
of the system to write plugin middleware to perform various
forms of processing and analysis on applications once they
have been downloaded. For example, we wrote a plugin
for decompiling APKs into readable Java sources to enable
easier comprehension of application behavior. The decom-
pile plugin uses apktool [35] to deflate the XML files and
dex2jar [17] with a command-line version of JD-Core [37]
for Java decompilation. The resulting Java sources are quite
readable and complete, though not directly suitable to re-
compile back into an APK. As another example, we wrote a
plugin for parsing the ./res/values/public.xml file to ex-
tract resource names and compute the MD5 hashes of asset
and resource files in the application to facilitate detection of
similar applications as discussed in Section 7.

PlayDrone stores the raw application metadata and de-
compiled sources from crawling the Google Play store in
its respective Git repositories, with each commit tagged
with the crawl date or the application version when ap-
plicable. PlayDrone stores source code and application
metadata in Elasticsearch, a distributed search and analyt-
ics engine [19]. Elasticsearch has a simple web interface,
allowing fast searching of the data and various forms of sim-
ple analysis before writing a middleware plugin to perform
more complete analysis of the data. A different index is
used for each day of metadata from the Google Play store,
making it possible to visualize the evolution of the Google
Play store. For space reasons, only the most recent decom-
piled sources are indexed in Elasticsearch; older versions are
stored in the respective Git repositories. Users can reindex
data in Elasticsearch from the Git repositories as they store
all the raw data collected from Google Play.

4. CRAWLER PERFORMANCE
Because of the use of the Ruby ecosystem, the effort to

build and deploy PlayDrone was fairly low. The entire
application was less than 2000 lines of Ruby and HTML.
As a (unfair) comparison, GNU cat is 550 lines of code.
PlayDrone deployment is also quite simple and the sys-
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Figure 3: A typical daily crawl from May 21, 2013 showing
the throughput and latency of the Google Play API.

tem setup is entirely automated with Chef [10] and Capis-
trano [9], which are tools written in Ruby. The amount
of code we had to write to manage the entire system was
less than 550 lines of code, including configuration file tem-
plates (e.g. upstart). PlayDrone is simple enough to be
understood and used by others, and yet can provide power-
ful insights into Google Play. We have made PlayDrone
source code available on GitHub [38] for others to use.

We deployed PlayDrone on ten servers on April 24, 2013,
each with Intel Xeon E3 turbo boosted at 3.8Ghz, 32GB of
RAM, and 2x2TB drives. The initial crawling took around
two days, limited by CPU due to the source decompilation.
Once the initial crawling was complete on April 26, 2013,
the total size occupied by the Git repositories was 3.9TB
with 790,000 applications, an average of about 5MB per
application. Subsequently, crawling Google Play for new
applications and application updates as well as identifying
deleted applications took only several hours, enabling Play-
Drone to crawl the entire Google Play store on a daily basis.
Note that subsequent crawls after the initial crawl operate
in exactly the same manner as the initial crawl, but Play-
Drone does not need to download and decompile APKs for
applications that have not changed. After two months of
crawling, the total size of the compacted Git repositories
reached 5.3TB with roughly 960,000 applications, among
which 70,000 applications were removed from the Google
Play store but archived by PlayDrone. We decommis-
sioned the crawler on June 22, 2013 to save resources. In
November 2013, we redeployed the crawler to validate that
our crawling method was still valid and analyze the evolu-
tion of the Google Play store five months later.

Figure 3 shows the throughput and latency of the Google
API during a daily crawl using PlayDrone. A daily crawl
updates all the metadata of each known application, and
discovers and downloads new applications. From 05:00 to
10:00, PlayDrone updates the metadata of all known ap-
plications in the system. The Details API endpoint is called
once for each application. The response from Google servers
includes various metadata including the current number of
downloads, the current version of the application, and a list
of related applications. Because all application metadata is
stored in Git, PlayDrone bottlenecks at 50 requests per
second (req/s) due to disk I/O. Later in the afternoon from
12:00 to 20:00, PlayDrone performs a dictionary search to

Number of applications
June 22, 2013 November 30, 2013

Free apps 691,517 884,217 (+28%)
Paid apps 195,703 223,259 (+14%)
All apps 887,220 1,107,476 (+25%)

Cumulative download counts (min-max)
June 22, 2013 November 30, 2013

Free apps 22G-85G 31G-116G (+37%)
Paid apps 111M-428M 126M-488M (+14%)
All apps 23G-85G 31G-117G (+37%)

Table 1: Number of applications and cumulative download
counts on June 22, 2013 and November 30, 2013.

discover additional applications. During the first 90 min-
utes, the Search API is called at full capacity, artificially
rate limited to 250 req/s to avoid getting our Google ac-
counts flagged; we empirically measured the rate limit en-
forced by Google at 1000 req/min per account. The through-
put reaches maximum capacity because many words do not
generate any results and the average API response is small
to parse. After 90 minutes, the response size gets larger and
PlayDrone bottlenecks on CPU, parsing these lengthy re-
sponses. When the Details API returns with a new version of
the application that PlayDrone has not previously down-
loaded, the Purchase API endpoint is called to retrieve the
download link, and proceed to downloading the APK.

Table 1 shows the number of applications PlayDrone
discovered and downloaded from Google Play. By June 22,
2013, we indexed 887,220 applications. By November 30,
2013, we indexed 1,107,476 applications, which is to the best
of our knowledge the most extensive coverage of the Google
Play store. Table 1 also shows cumulative download counts
based on the download count ranges reported by Google
Play. From June to November, The Google Play store grew
by 25% in the number of applications, and 37% in download
counts. Based on the last official report from Google indi-
cating Google Play having 1 million applications as of July
24, 2013 [39] and the rate of growth of Google Play content
shown in Figure 4, we estimate that our method covers over
90% of the Google Play applications with a Galaxy Nexus
on T-Mobile profile. To increase coverage, we could check in
other types of Android devices to fetch, for example, applica-
tions that are restricted to tablets, or applications reserved
for a specific mobile carrier. Unless otherwise indicated, the
analysis of Google Play in the remainder of this paper fo-
cuses on the June 22, 2013 data collection.

5. GOOGLE PLAY CHARACTERISTICS
Using PlayDrone, we present aggregated characteristics

of Android applications based on a comprehensive index of
Google Play application sources and metadata. Table 2
shows the list of 887,220 applications available in the Google
Play store indexed by PlayDrone, separated into their re-
spective categories and whether they are free or paid. Game
applications are listed and categorized separately since they
are shown in a separate top-level directory in Google Play.
Categories are listed from most to least number of appli-
cations, and each application can only belong to one cate-
gory in Google Play. Overall, there are more than 3.5 times
as many free applications as paid applications. The aggre-
gate download counts of paid applications accounts for only
0.05% of total downloads from the store as shown in Table 1.



Applications
Category Free apps Paid apps Total apps
Personalization 59,477 33,682 93,159
Entertainment 72,685 16,772 89,457
Education 41,115 16,985 58,100
Lifestyle 48,763 11,269 60,032
Tools 47,608 12,092 59,700
Books & Reference 34,990 22,703 57,693
Business 41,701 2,675 44,376
Travel & Local 28,473 13,379 41,852
Music & Audio 33,221 4,550 37,771
Sports 19,906 4,889 24,795
Productivity 18,575 5,557 24,132
Health & Fitness 18,078 5,707 23,785
News & Magazines 21,919 1,260 23,179
Social 17,548 1,858 19,406
Finance 16,731 2,191 18,922
Communication 14,725 2,999 17,724
Media & Video 15,014 2,438 17,452
Shopping 11,547 678 12,225
Photography 8,407 2,331 10,738
Medical 7,137 3,405 10,542
Transportation 8,099 1,340 9,439
Comics 3,798 1,721 5,519
Libraries & Demo 3,760 256 4,016
Weather 2,810 563 3,373
Total 596,087 171,300 767,387

Games
Category Free apps Paid apps Total apps
Brain 36,533 8,938 45,471
Casual 24,370 5,901 30,271
Arcade 22,517 6,309 28,826
Cards 5,589 1,619 7,208
Sports Games 3,821 1,167 4,988
Racing 2,600 469 3,069
Total 95,430 24,403 119,833

Grand Total 691,517 195,703 887,220

Table 2: Applications in Google Play as of June 22, 2013.

We also measured that the top 10% of most downloaded ap-
plications accounts for over 96% of the total downloads, and
the top 1% of most downloaded applications accounts for
over 78% of the total downloads as of June 22, 2013. As of
November 30, 2013, the top 1% of most downloaded appli-
cations accounts for over 81% of the total downloads. This
suggests that a decreasing number of applications accounts
for almost all application usage in Google Play, indicating
the increasing difficulty of releasing a popular application.

Other than games, personalization, a somewhat vague cat-
egory name, represents the largest category of applications,
with over 90,000 applications. To find out more about this
category, we ranked the most recurring terms in the titles
and descriptions of applications, discarding common nonde-
scriptive words such as not, the, can, it, or, etc. The top
three words among personalization applications were wall-
paper, please, and like, accounting for 64,341 (69%), 35,953
(39%), and 26,563 (29%) applications, respectively. To com-
pare with other categories, the proportions of applications
that contain these words across the rest of Google Play were
4%, 12% and 12%, respectively. This suggests that the per-
sonalization category may be infected with many useless ap-
plications that users would consider as spam. This result
also suggests that wallpapers deserve their own category.

The problems with the personalization category are just
one of the problems with the application categorization used
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Figure 4: Evolution of Google Play from April 26, 2013 to
November 30, 2013. Missing bars represents lack of crawling.

by Google Play. Category names are confusing and overlap-
ping. Since an application can only belong to one category,
the social and photography categories are mutually exclu-
sive, so a user browsing the latter category will find no sign
of Instagram, arguably the most popular photo sharing ap-
plication. Similarly, business and productivity applications
are categorized separately, health and fitness applications
cannot correspond to lifestyle ones, and music and audio
applications must be categorized separately from media and
video applications. Given the large differences in the num-
ber of applications in each category and the already confus-
ing category names, Table 2 may be useful to developers in
deciding which category to use for applications to increase
their visibility by using a less populated category.

Figure 4 shows how the content of Google Play evolves
over time in terms of how often applications are released,
updated, and removed from Google Play. Google removes
applications that do not comply with their terms and con-
ditions. On most days, more applications are added than
removed, and more applications are updated than added.
During the May-June 2013 period, roughly 3000 new appli-
cations arrived daily on Google Play. This is far more than
the Top New listing in Google Play, which is limited to 500
applications and provides an incomplete picture of new ap-
plication content in Google Play. The November 2013 crawl
shows a 30% increase in application release and update rate.
The Google Play store is growing even faster than earlier in
the year, motivating the need for automated auditing and
quality control solutions.

Figure 5 shows a distribution of the average rating versus
download count for applications in Google Play. Download
counts are shown in bucketed ranges provided by Google
Play; exact download counts are not available. Free and
paid applications are shown separately. There are no paid
applications with more than 5 million downloads. Users can
rate an application with stars from 1 to 5, 5 being the highest
possible rating, and these ratings are aggregated by Google
Play per application to compute an overall average rating
for each application. For example, Figure 5 shows that for
applications with less than 500 downloads, there are applica-
tions with an overall rating as low as 1, applications with an
overall rating as high as 5, and on average, paid applications
have an overall rating of 4 with free applications having an
overall rating of greater than 4. One might expect that ap-
plications with higher ratings would have higher download
counts, but in fact the average of the overall ratings across
all applications in any bucket of download counts was be-
tween 4 and 4.5. What did change was that as the download
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Figure 5: Ratings vs download counts for free/paid applica-
tions on June 22, 2013.

counts increased, the rating for the lowest rated application
in a given download count bucket generally increased. For
example, there are free applications with only 1 star over-
all ratings with less than 50 thousand downloads, but there
are no applications with less than a 2.5 star overall rating
with 10 million or more downloads. This increase in the
minimum overall rating as the download count increases is
even more pronounced for paid applications. Surprisingly
though, there are still quite a few applications with very
low ratings despite their high download counts.

Table 3 shows the top ten applications with the worse and
best ratings which have at least a million downloads. The
ten worst rated list shows three applications that come pre-
installed, namely the T-Mobile one, the Motorola fitness
watch application, and the HRS hotel application prein-
stalled on some HTC phones. Another interesting case is
the Outlook.com application that advertises in its descrip-
tion to be the official Microsoft application for outlook.com.
The developer, “Microsoft + SEVEN”, has only one applica-
tion released under his account, while the official Microsoft
account, “Microsoft Corporation”, has 18 applications. We
were surprised that Microsoft hired SEVEN to develop their
outlook.com application and did not release it under the of-
ficial Microsoft account as releasing official applications un-
der other accounts trains users to be more vulnerable to
phishing attacks. The worst rated application with at least
one million downloads is DroidScale, which gives the users
the ability to turn their phones into a scale, enabling them
to weight regular household objects. We decompiled the
sources, to find that the weight is simply measured with
Random.nextDouble(), a randomly generated number. An
ad-free version of the application is even offered for $0.99
that has 1000-5000 downloads.

The top ten best rated list shows half of the applications
on the list being related to the Holy Quran. Such high rat-
ings can be explained by the target audience that prefers to
rate the content rather than the application. For example,
reading comments in the TvQuran application reveals un-
happy users having sound issues or readability issues while
still giving 5 stars. User comments and ratings are pub-
licly available through Google+, so certain users may not
be comfortable putting a bad rating on a Holy Quran ap-
plication. We also observe that some applications such as
Slots Deluxe or Cool Wallpapers have 10 times more ratings
count than other applications in the same download counts
bucket. While there might be some aggressive incentive from
the application telling the user to rate the application, it is
hard to draw any conclusions as Google does not give exact
download counts.

Application Downloads # Ratings Rating
TvQuran 1M-5M 13,675 4.93
Bi�ety PDD 2013 RF 1M-5M 15,738 4.92
Holy Quran Maher Moagely 1M-5M 6,341 4.91
Slots Deluxe - Slot Machines 1M-5M 108,431 4.90
�Ù�Ù³Ø�Ù�Ù§Ø �ÙµØ­Ø ±Ø§Ø�Ù°Ø£Ø Ù ©Ø Ù¹Ø¯Ø£Ø 1M-5M 19,567 4.89

Alchemy Classic HD 1M-5M 37,706 4.89
Zombies...OMG! 1M-5M 46,236 4.89
Quran - �Ù Ù±Ø�Ù�Ù§Ø �Ù¢Ø±Ø�Ù�Ù§Ø 1M-5M 17,666 4.89

My Prayer - ÙªØ§Ø�ÙµØ 1M-5M 33,893 4.88

Cool Wallpapers HD 1M-5M 210,320 4.87

GoToMeeting 1M-5M 4,696 2.41
Outlook.com 10M-50M 78,049 2.39
TAMAGO hd 1M-5M 5,706 2.31
MOTOACTV 1M-5M 4,191 2.30
Screen Capture - No Rooting 1M-5M 2,963 2.28
Wet Lesbian 1M-5M 2,865 2.23
Ameba 1M-5M 35,933 2.21
HRS App 1M-5M 5,778 1.99
T-Mobile More For Me 5M-10M 1,763 1.84
DroidScale 1M-5M 5,450 1.67

Table 3: Top 10 of the best and worse rated applications
with at least 1 million downloads on June 22, 2013.

6. APPLICATION LIBRARY USAGE
Using PlayDrone to decompile applications, we present

the first large-scale source code analysis of library usage in
Android applications. One important question regarding li-
brary usage is how often native libraries are used in the
context of Android’s Java applications to improve their user
experience. A native library contains code compiled directly
for ARM and is invoked from the Java part of the applica-
tion to improve performance or access low-level system calls.
Figure 6 shows the number and percentage of Android ap-
plications that use native libraries versus download counts.
For non-popular applications, those with less than 50,000
downloads, 14% of them on average have at least one native
library. However, for popular applications, native library
usage increases significantly such that among applications
with more than 50 million downloads, the vast majority of
them, 70% of them on average, have at least one native li-
brary. For example, Instagram uses seven different native
libraries to optimize image processing and encoding perfor-
mance, and Facebook uses nine different native libraries to
access low-level system functionality, such as getting and
setting the file descriptors limit of the current process.

As an application rises in popularity, developers are per-
haps more willing to spend time and money to use native
libraries to optimize the user experience of the application.
Although there are efforts to run Android on non-ARM plat-
forms for offloading and other reasons [12, 40], these systems
rely on Java bytecode portability and do not support native
library execution. Our results suggest that such approaches
are problematic in that they will be unable to run the most
popular Android applications. Despite Java’s portability,
these results indicate that the wide use of native libraries in
popular Android applications may increasingly tie Android
to ARM-based systems.

Table 4 shows the breakdown of the most popular Java
libraries used among free applications, separated into non-
popular (<50k downloads) and popular applications (≥50k
downloads). Applications may use more than one library, so
the sum of the percentages may exceed 100%. The break-
down shows that ad libraries are most widely used, with al-
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Figure 6: Native libraries usage compared to application
popularity on June 22, 2013.

most half of the non-popular applications using ad libraries
while almost two-thirds of the popular applications use ad
libraries. Ad libraries are most likely more common in popu-
lar free applications because there is a greater focus on mon-
etization for successful applications than many non-popular
free applications. Google is the most popular advertising
platform, with almost half of the popular applications us-
ing Google Ads. Among applications that use ad libraries,
Google dominates with roughly 75% market share. This
general trend of increased monetization of popular appli-
cations and Google’s dominant role is also seen for billing
libraries used for in-app purchases. Other than advertising,
social libraries are the next most popular with almost 15%
of free applications using those libraries. The official Face-
book SDK is the most widely used, followed by Twitter4J,
an unofficial Twitter library.

Table 4 also shows the percentage of free applications
built using cross-platform frameworks or application gen-
erators. Almost 15% of non-popular applications are built
using these frameworks and generators, but only about 3% of
popular applications use these frameworks and generators.
Beginning developers may find it useful to use application
generators to simplifying development, or use cross-platform
frameworks to be able to deploy an application on both An-
droid and iOS platforms. However, the measurements sug-
gest that these generators and frameworks most likely lack
the necessary functionality and degree of control for building
more sophisticated applications with richer user experiences
that are more likely to become popular and widely used.

7. SIMILAR APPLICATIONS
Leveraging PlayDrone, we introduce a simple approach

to identify similar applications in Google Play for the pur-
poses of detecting duplicative content and application clones.
Similar applications are those that appear to share the same
source code origin, share common design and layout pat-
terns, and offer comparable application level experiences to
the end user. Previous studies have shown Android applica-
tion clones to be vectors in spreading malware [43] as well as
instruments to divert users and advertising revenues from le-
gitimate applications [23]. While prior research has focused
on code analysis to identify similar applications, this can
be problematic for obfuscated code or applications where
the core logic is written in multiple programming languages,
such as in PhoneGap and Adobe Air applications. Addition-
ally, code analysis methods are often too computationally
expensive to scale to analyze all of Google Play.

Our scalable approach comes from a simple observation:
humans can typically just look at the screenshots of applica-
tions to determine if applications are similar. Humans recog-
nize patterns by looking at the UI layouts or the similarity

Advertising platform
Name Non-popular apps Popular apps
Google Ads 225,344 (35.73%) 25,946 (49.47%)
Google Analytics 64,799 (10.28%) 7,522 (14.34%)
Flurry 34,040 (5.40%) 6,477 (12.35%)
Millennial Media Ads 23,120 (3.67%) 3,480 (6.64%)
MobFox 19,709 (3.13%) 1,219 (2.32%)
InMobi 17,432 (2.76%) 3,128 (5.96%)
RevMob 18,064 (2.86%) 1,018 (1.94%)
Urban Airship Push 14,657 (2.32%) 525 (1.00%)
Mobclix 12,315 (1.95%) 1,866 (3.56%)
Smaato 12,290 (1.95%) 241 (0.46%)
AirPush 10,773 (1.71%) 657 (1.25%)
SendDroid 9,907 (1.57%) 742 (1.41%)
Adfonic 9,170 (1.45%) 435 (0.83%)
Jumptap 8,968 (1.42%) 570 (1.09%)
HuntMads 7,275 (1.15%) 135 (0.26%)
TapIt 7,131 (1.13%) 259 (0.49%)
Umeng 5,742 (0.91%) 805 (1.53%)
TapJoy 3,358 (0.53%) 2,645 (5.04%)
AppLovin 5,124 (0.81%) 824 (1.57%)
MoPub 4,187 (0.66%) 1,167 (2.23%)
LeadBolt 3,517 (0.56%) 475 (0.91%)
Total 302,611 (47.98%) 34,348 (65.49%)

Social
Name Non-popular apps Popular apps
Facebook SDK 77,489 (12.29%) 6,206 (11.83%)
Twitter4J 41,606 (6.60%) 2,057 (3.92%)
Total 92,495 (14.67%) 6,990 (13.33%)

Cross-platform framework
Name Non-popular apps Popular apps
PhoneGap 36,915 (5.85%) 606 (1.16%)
Adobe Air 12,761 (2.02%) 619 (1.18%)
Titanium 8,316 (1.32%) 138 (0.26%)
Total 57,991 (9.20%) 1,363 (2.60%)

Application generator
Name Non-popular apps Popular apps
Bizness Apps 10,011 (1.59%) 3 (0.01%)
App Inventor 9,560 (1.52%) 152 (0.29%)
Andromo 6,294 (1.00%) 156 (0.30%)
iBuildApp 4,149 (0.66%) 25 (0.05%)
Mobile by Conduit 3,989 (0.63%) 21 (0.04%)
Total 34,003 (5.39%) 357 (0.68%)

Bug tracking
Name Non-popular apps Popular apps
BugSense 59,550 (9.44%) 4,251 (8.11%)
Acra 25,658 (4.07%) 1,450 (2.76%)
Total 84,896 (13.46%) 5,663 (10.80%)

Billing
Name Non-popular apps Popular apps
Google Billing 27,846 (4.42%) 6,312 (12.04%)
Paypal 16,943 (2.69%) 374 (0.71%)
Authorize.net 8,464 (1.34%) 1 (0.00%)
Amazon Purchasing 3,356 (0.53%) 1,044 (1.99%)
Total 44,798 (7.10%) 6,686 (12.75%)

Audio/graphics engine
Name Non-popular apps Popular apps
FMOD 8,199 (1.30%) 1,705 (3.25%)
Unity3D 8,158 (1.29%) 1,601 (3.05%)
AndEngine 7,098 (1.13%) 1,080 (2.06%)
libGDX 6,311 (1.00%) 1,395 (2.66%)
Corona SDK 3,750 (0.59%) 396 (0.76%)
Total 23,774 (3.77%) 4,222 (8.05%)

Table 4: Application libraries usage on June 22, 2013.

of images. Android applications are structured such that
these visual aspects are embodied in resources and assets,
such as images, sounds, UI layouts, or application settings.



Resources and assets are two different ways to embed visual
elements in Android applications, the former having a locale-
aware naming hierarchy through the ‘R’ Java class while the
latter provides raw access to files. Based on this observa-
tion, we leverage the structure of Android applications to
use a feature set of resource names and asset signatures, the
latter generated by taking the MD5 hash of each asset of
an application excluding its icon and XML files. This fea-
ture set is easy to identify and compute even for obfuscated
application code, making it fast enough to use with daily
crawls of Google Play.

Using PlayDrone to study 610,000 free applications down-
loaded and decompiled on May 5, 2013, we found roughly 58
million unique resource names and 45 million unique asset
signatures. Because the most common resource names and
asset signatures occur in widely-used application libraries,
their frequency is high and they are poor indicators of ap-
plication similarity. To address this issue, we use a simple
blacklist approach with a cutoff parameter C that ignores
resource names and asset signatures appearing in more than
C applications. With a cutoff of 300, 45,000 resource names
and 14,000 asset signatures are ignored, which represent
0.08% of the unique resource names and 0.03% of the unique
asset signatures considered.

To determine whether two applications AppA and AppB
with respective feature sets A and B are similar, we use the

Jaccard index J(A,B) = |A∩B|
|A∪B| . The resulting score is a real

number [0, 1]. If the Jaccard index is above a certain thresh-
old T , the two applications compared are considered simi-
lar. We compute the Jaccard index separately for resource
names and asset signatures, ignoring the blacklisted ones.
Similar applications are grouped into clusters. For simplic-
ity, we assume that applications typically derive from one
other application, so that each application should only be
included in at most one cluster. We therefore merge clusters
whenever an application has multiple matches belonging to
different clusters. Each cluster is assigned a victim appli-
cation, which is the application with the most downloads,
under the assumption that it is also the one most likely to
have been the duplicated. We then merge the clusters based
on resource names with those based on asset signatures. All
of this is accomplished by first indexing all resource names
and asset signatures in Elasticsearch, then querying Elas-
ticsearch to match applications. The former is done once
per APK and takes a couple of hours while the latter takes
around 20 minutes on our cluster of ten machines. The
number of similar applications is the sum of the size of each
detected cluster, excluding their victim application.

Figure 7 shows the number of similar applications de-
tected when varying the score threshold T ranging from
0.6 to 1.0. A value of 1.0 represents an exact match of
resources and assets, while 0.8 allows similar applications
to have some differences. We compare the effectiveness of
using both resource names and asset signatures versus only
using one or the other. Asset signatures alone detect fewer
similar applications because many applications have no as-
sets at all. Figure 8 shows the distribution of clusters by
sizes. The distribution shows that clusters with sizes larger
than 300 are infrequent, suggesting 300 as a suitable cutoff
to exclude common application libraries. We base the rest
of our discussion on using C = 300 and T = 0.8. Using these
parameters, there were 158,204 free duplicative applications
in Google Play, roughly 25% of the free application content.
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Figure 7: Similar apps vs score threshold (cutoff = 300).
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Figure 8: Number of clusters of similar apps vs cluster size
(threshold = 0.8).

We then divided the similar applications taking into ac-
count developer information. Each application uploaded to
Google Play is signed by a developer using a private key.
We compared the ownership of each similar application by
examining both the developer name associated with the ap-
plication account and the certificate included in the appli-
cation package. If either of these attributes match, applica-
tions are labeled as rebranded. If neither author attributes
match, applications are labeled as clones. Out of 158,204
similar free applications, 115,896 were rebranded and 42,308
were clones. Sources of rebranding included changing the
languages displayed in the user interface and reusing code
from one application as a template for a new application,
especially for wallpaper, trivia, and travel information ap-
plications. Sources of cloning included use of automated
tools and wizard services, copying open source applications,
contracting the same third party to develop applications
for a range of clients in a specific industry, and plagiarism,
though the latter is difficult to detect without knowing the
relationships among developers. For a developer of an origi-
nal application who therefore does know these relationships,
PlayDrone can be useful to detect application cloning in
various ways, from identifying plagiarized applications to
monitoring statistics over all clones to gauge the health and
popularity of an open-source project.

To evaluate the accuracy of our approach, we took a ran-
dom sample of 400 applications flagged as similar and man-
ually compared them to their corresponding victim applica-
tion. Out of 400 applications identified as similar, manual
inspection indicated that 5% were false positives that in-
cluded similar resources and assets but actually differed on
account of visible design and functionality differences. We
also compared PlayDrone’s method of similarity detection
to a code analysis tool we built based on extracting a fea-
ture set of Android SDK methods from the DEX bytecode
of an application [41]. Running the same 400 applications
through the code analysis tool, only 79% of the manually
verified applications were correctly identified.



PlayDrone’s better performance can be explained by
classifying code cloning techniques [32]. While most code
analysis methods are able to identify similar applications
with variations in identifiers, literals, types, whitespace, lay-
out and comments (Type-1 and Type-2), they are less reli-
able in detecting similar applications with changed, added,
or removed statements (Type-3) and ineffective at detecting
similar applications implemented through different syntatic
variants (Type-4). Because PlayDrone’s detection tech-
nique is agnostic to the complexity of the code transforma-
tions used for cloning, it is the first system that can identify
similar Android applications across all four clone types, in-
cluding Type-3 and Type-4 clones. This makes PlayDrone
not only fast and efficient, but also a more robust system
for detecting application similarity in Google Play.

8. AUTHENTICATION TOKENS
The rise of the Web 2.0 architecture has seen a prolifer-

ation of cloud service APIs. Service to service communi-
cation is usually authenticated with secret tokens that are
known only by the involved parties. When implemented
as intended, secret tokens are never shared and are stored
on trusted servers where they can be properly safeguarded.
However, as these service to service protocols have been
adapted to mobile applications, we have discovered using
PlayDrone that developers are now embedding secret to-
kens directly into applications. While developers may be-
lieve their application sources are well guarded, the ease of
decompilation and the widespread availability of mobile ap-
plications makes recovering secret tokens relatively simple.
We discuss how we used PlayDrone to discover secret to-
kens used with Amazon Web Services (AWS) and several
OAuth providers and demonstrate the potential for abuse
of these tokens by malicious actors.

8.1 Discovering Tokens
We used PlayDrone’s search engine to quickly probe ap-

plication source code by searching words such as “secret”
and found a large number of insecure tokens used for var-
ious services because developers often use constant names
with the substring “secret” to identify their secret tokens.
Our search results show that services often use tokens with
service-specific formats. For example, the AWS API is ac-
cessed with an AccessKeyId which starts with the substring
“AKIA”. Figure 9 shows a source search for all strings start-
ing with “AKIA” revealing many AWS tokens. To extract
authentication tokens, we created a flexible framework that
searches for secret tokens in the decompiled Java source files
of applications using regular expressions. Tokens usually
come in pairs, typically a client ID and its corresponding
secret key functioning similar to a username and password.
For example, in the case of AWS, requests are signed using a
40 character string SecretAccessKey. To discover AWS cre-
dentials, we configured PlayDrone to find pairs of strings
matching AKIA[0-9A-Z]{16} and [0-9a-zA-Z/+]{40} that
are at most 5 lines apart.

Table 5 summarizes various authentication tokens for widely-
used services that we found using PlayDrone. Total Can-
didates denotes the number of tokens found across the entire
Google play store from the June 22, 2013 snapshot. Unique
Candidates denotes the number of different tokens. The dif-
ference between total candidates and unique candidates can
be explained by developer keys reuse, and various libraries

directly embedding tokens in their SDKs. Unique % Valid
denotes how many of the unique tokens from the June 22,
2013 snapshot were still valid on November 11, 2013. To
test the validity of tokens, we sent authentication requests
to their respective providers. Note that these results repre-
sent a conservative measure of the number of tokens in ap-
plications in Google Play as the simple search method does
not detect tokens in obfuscated code because of its reliance
on regular expression pattern matching.

8.2 Amazon Web Services
AWS provides various cloud computing resources that can

be purchased by developers using AWS accounts and ac-
cessed by the developers’ applications using AWS tokens
associated with the respective AWS accounts. As shown in
Table 5, we found 308 unique AWS tokens from the June
22, 2013 snapshot. Five month later, we tested the validity
of these tokens by sending an AWS API request to count
the number of storage buckets in the AWS Simple Storage
Service (S3). We found 94% of the tokens were still valid
five months later. These read-only API calls were carefully
chosen to preclude any impact to AWS customer’s data or
resources. Amazon provides documentation describing best
practices and a variety of ways to configure AWS tokens
with different levels of privilege [2]. Despite this documented
flexibility, we were surprised to find that even though some
developers only intended their applications to use AWS to-
kens to access AWS Simple Database or Flexible Payment
Services, the tokens embedded in the applications were root-
level credentials providing access to all the other AWS ser-
vices, including creating and shutting down Elastic Compute
Cloud (EC2) instances or freely accessing S3 data.

Exposure of the AWS tokens can provide access to exist-
ing AWS resources, potentially leading to a range of confi-
dentiality, integrity, and availability attacks, as well as the
capability to allocate new resources at the owner’s expense.
With 288 valid tokens, an attacker could potentially setup
a botnet of AWS EC2 instances. While AWS has a number
of mechanisms to thwart such activities [30], usage patterns
on AWS are elastic and inherently unpredictable, which may
make it hard to detect stolen resources. Unless billing alerts
are manually configured, billing statements will not reflect
usage until the end of the billing cycle. Amazon recognizes
the risks of embedding secret keys in Android applications
and actively advises developers against this practice in their
Android SDK documentation [5]. Additionally, AWS pro-
vides mechanisms for Android developers to securely lever-
age AWS from their application, such as AWS Token Vend-
ing Machine [4] and AWS Web Identity Framework [3]. The
problem is that developers often find it simpler to embed to-
kens in their applications without being aware of best prac-
tices and understanding the resulting security risks.

Because of the potential for malicious use of the AWS to-
kens in Google Play, we reached out to Amazon to warn
them of this security risk. Amazon responded quickly by
identifying their affected customers based on the list of to-
kens we provided, and reaching out and working with their
customers to resolve the security issues, though some mis-
takenly assumed that Amazon itself was scanning for secret
keys in Android applications [8, 11, 28]. We also reached out
to Google to ask them to scan for AWS and other tokens in
applications as part of the Google Play application publica-
tion process to help protect users and developers. Google



Amazon Facebook Twitter Bitly Flickr Foursquare Google LinkedIn Titanium

Total candidates 1,241 1,477 28,235 3,132 159 326 414 1,434 1,914
Unique candidates 308 460 6,228 616 89 177 225 181 1,783
Unique % valid 93.5% 71.7% 95.2% 88.8% 100% 97.7% 96.0% 97.2% 99.8%

Table 5: Credentials statistics from June 22, 2013 and validated on November 11, 2013. A credential may consist of an ID
token and secret authentication token.

Figure 9: PlayDrone’s web interface to search decompiled sources showing Amazon Web Service tokens found in 130 ms.

automatically scans for some vulnerabilities, but plans to
add checks and automated notices to developers for these
specific issues as part of the Google Play application pub-
lication process. At Google’s request, we provided some of
our tools to help them develop these checks.

8.3 OAuth Tokens
Applications often request access to users’ data to per-

form actions on their behalf. The standard protocol used
by service providers to give access to users’ data is OAuth.
A third-party can register his application with an OAuth
provider to receive OAuth client credentials consisting of a
(client_id, client_secret) key pair. OAuth credentials
are typically used in two ways. One way is to issue requests
to the OAuth provider on behalf of the application, for ex-
ample to ban a specific user or consume a rate-limited API
(e.g. search). Another way is to request a user-specific ac-

cess_token to perform actions on the user’s behalf. For ex-
ample, to acquire an access token, the third-party provides
a link such as “Login with Facebook” on his website that
would initiate the OAuth authentication process, including
asking a user to grant permissions requested by the third-
party application. Upon user acceptance, the third-party
client receives an access token that can be used to read the
user’s Facebook friend list or post on his public feed.

When implemented correctly, the OAuth authentication
protocol never reveals the tokens associated with a client’s
OAuth credentials. The tokens are stored on the third-
party’s server where it can be properly safeguarded. Re-
quests can then be proxied through the third-party’s server
where the tokens reside. Unfortunately, developers often
adapt this protocol to mobile applications by embedding

OAuth tokens directly into their mobile applications without
realizing their credentials are easily compromised through
decompilation. Once an attacker acquires a secret OAuth
token, a wide range of attacks can be performed as the tar-
geted third-party application is open to impersonation. For
example, an attacker can perform denial of service attacks
on rate limited services, access and modify application set-
tings, expose private user information, and launch phishing
attacks in an attempt to get users’ access tokens. Table 5
shows the total number of OAuth credentials we found in
Android applications on Google Play for Facebook, Twitter,
Bitly, Flickr, Foursquare, Linkedin, Google+, and Appceler-
ator’s Titanium cloud services. After five months, over 90%
of most of the OAuth credentials were still valid.

Focusing on Facebook and Twitter, we discovered 1,477
Facebook credentials and 28,235 Twitter credentials among
all the free applications in Google Play. Finding 20 times
as many Twitter tokens than Facebook tokens is surprising
as Table 4 shows that the Facebook SDK is used twice as
much as the Twitter4J library. One possible explanation is
that until recently, Twitter encouraged developers to embed
their secret tokens directly in client applications and even
provided an official tutorial detailing this practice for An-
droid using Twitter4J [36]. In contrast, as shown on the
Facebook developer page [21], Facebook stresses the impor-
tance of never storing OAuth secret tokens in client appli-
cations: Note that [this OAuth request] must never be made
in client-side code or in an app binary that could be decom-
piled. It is important that your app secret is never shared
with anyone. Therefore, this API call should only be made
using server-side code. To avoid the need of storing secret
tokens on a mobile device, Facebook leverages the presence



of the official Facebook Android application on Android de-
vices. The Facebook SDK allows third-party applications to
use Android intents to proxy requests for user access tokens
through Facebook’s Android application, where the user is
already authenticated. To retrieve a user’s access token with
the Facebook SDK, the Android application identifier of a
third-party application must be registered on its Facebook
application settings page. This allows Facebook’s Android
application to respond to the third-party application’s ac-
cess token request by verifying the application identifier in
the intent to the one officially registered online. Only the
application identifier is needed and no secret key is compro-
mised since it is retrieved at runtime. This technique relies
on the robustness of Android since the source of the Android
intent is assumed not to be spoofable.

Despite all the measures Facebook takes to make writ-
ing secure application easy, Table 5 shows that numerous
developers still embed OAuth tokens in their applications
and even seasoned developers have trouble following Face-
book’s simple security guidelines. For example, the popular
Airbnb application still contained their Facebook, Google,
LinkedIn, Microsoft, and Yahoo secret tokens from June 22,
2013 until well past November 11, 2013. Airbnb is the
leader in peer-to-peer apartment rentals with more than
10 million users who are required to register on Facebook
or Google+ to verify their identity. This is problematic in
the case of Facebook because its API is too flexible by de-
fault, permitting user context queries to be performed in
an application context. The default application settings al-
low an application to perform actions on behalf of a user at
any later time once the user has authenticated the applica-
tion. Even if an application does not subsequently retrieve
a user access token, it still retains whatever permissions the
user granted the first time the OAuth authentication pro-
cess was run for the application. For example, we were
able to access the email and friends list of Airbnb users
using the URL: https://graph.facebook.com/<user_id>

?fields=email&access_token=<oauth_client_id>|<oauth_

secret_key>. Fortunately, the Airbnb application did not
have permission to post on users’ walls, otherwise we could
write arbitrary content on millions of Facebook walls.

We notified Facebook of this problem and they immedi-
ately revoked the Airbnb OAuth credentials on Facebook.
In a matter of hours, Airbnb published a new version of
their application in Google Play, properly using the Face-
book SDK for authentication and removing all secret tokens
from the application. We also provided Facebook with a list
of other Facebook tokens that we identified and Facebook
promptly disabled Facebook access for those applications as
well to protect Facebook users from potential unauthorized
access. The affected applications would have to be updated
using secure methods to regain functionality, resulting in
service disruption for many users until updated applications
are published in Google Play and users download the up-
dated applications. Our results show that developers often
ignore best practices, so it is important for OAuth providers
to provide protection mechanisms such as limiting the ser-
vice scope of tokens to help mitigate this security problem.

9. RELATED WORK
Besides Google, several companies maintain and publi-

cize regular statistics about Google Play applications. An-
droLib [6], AppBrain [7], and MixRank [29] offer services to

help discover new applications and regularly publish statis-
tics about the applications they have collected. d’Heureuse
et al. [18] provide a temporal study of application statistics
for Apple, Google, Microsoft and BlackBerry markets based
on metadata collected from web scraping. Unlike previous
studies and services, PlayDrone provides a scalable tool to
crawl Google Play on a daily basis and a framework to an-
alyze Google Play content at scale, including analysis based
on Android application source code.

Some previous work has considered aspects of some of the
issues we have studied. A number of approaches have ex-
plored how to detect similar Android applications, though
not at the scale of the entire Google Play store. These
approaches are computationally complex as they are based
on application code analysis, either using pairwise compar-
isons [16, 13, 27, 42] or comparing applications to a subset
of their closest neighbors [14, 41]. In contrast, PlayDrone
indexes application resource signatures with Elasticsearch
to efficiently match applications with common features.

Much work has focused on the security of Android ap-
plications and the presence of malware in Google Play, but
this work has focused on possible compromises of user data
and privacy on the Android devices themselves [20, 22, 25,
44]. While PlayDrone can be used as a tool to enable
similar studies, we show how PlayDrone can be used to
analyze a completely different type of security threat. By
simply analyzing Android application content, we show that
malicious attackers can go beyond Android devices to com-
promise server resources without even having users execute
vulnerable Android applications. We present the first study
to investigate these type of server-side vulnerabilities from
mobile client code, showing evidence of how mobile develop-
ers leak secret tokens used in OAuth authorization and the
Amazon Web Services API.

10. CONCLUSIONS
We have built PlayDrone, a system that uses various

hacking techniques to circumvent Google security to suc-
cessfully crawl Google Play. PlayDrone scales by simply
adding more servers and is fast enough to crawl Google Play
on a daily basis, downloading over 1.1 million Android appli-
cations and decompiling over 880,000 free applications. We
use PlayDrone to perform a large-scale characterization
of Android applications in Google Play and demonstrate
how application content evolves over time, how even highly
downloaded applications can be poorly rated, and that de-
spite the large number of applications in Google Play, only
a small percentage of free applications account for almost
all downloads. We further show that (1) native libraries
are heavily used by popular Android applications, limiting
the benefits of Java portability and the ability of Android
server offloading systems to run these applications, (2) 25%
of Google Play is duplicative application content, and (3)
Android applications contain thousands of leaked secret au-
thentication keys which can be used by malicious users to
gain unauthorized access to server resources through Ama-
zon Web Services and compromise user accounts on Face-
book. We worked with service providers, including Amazon,
Facebook, and Google, to identify and notify customers at
risk, and make the Google Play store a safer place. These
results demonstrate that PlayDrone can serve as a useful
tool to better understand Android applications and improve
the quality of application content in Google Play.
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