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ABSTRACT
We present MobiDesk, a mobile virtual desktop comput-
ing hosting infrastructure that leverages continued improve-
ments in network speed, cost, and ubiquity to address the
complexity, cost, and mobility limitations of today’s per-
sonal computing infrastructure. MobiDesk transparently
virtualizes a user’s computing session by abstracting under-
lying system resources in three key areas: display, operating
system, and network. It provides a thin virtualization layer
that decouples a user’s computing session from any particu-
lar end-user device, and moves all application logic to host-
ing providers. The virtualization layer decouples a user’s
computing session from the underlying operating system and
server instance, enabling high-availability service by trans-
parently migrating sessions from one server to another dur-
ing server maintenance or upgrades. We have implemented a
prototype in Linux that works with existing unmodified ap-
plications and operating system kernels. Our experimental
results demonstrate that MobiDesk has very low virtualiza-
tion overhead, can provide a full featured desktop experience
including full-motion video support, and is able to migrate
users’ sessions efficiently and reliably for high-availability,
while maintaining existing network connections.

Categories and Subject Descriptors
C.2.4 [Computer-Communication-Networks]: Distribu-
ted Systems—client/server ; D.4.7 [Software-Operating
Systems-Organization and Design]: Distributed Sys-
tems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
computer utility, virtualization, process migration, thin-client
computing, network mobility, on-demand computing
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1. INTRODUCTION
Continuing advances in hardware technology have enabled

the proliferation of faster, cheaper, and more portable per-
sonal computers to support increasingly mobile users. As
personal computers become more ubiquitous in large cor-
porate, government, and academic organizations, the total
cost of owning and maintaining them is becoming unman-
ageable. These computers are increasingly networked which
only complicates the management problem. They need to
be constantly patched and upgraded to protect them, and
their data, from the myriad of viruses and other attacks
commonplace in today’s networks. Furthermore, as mobile
users transport their portable computers from one place to
another, it is not uncommon for these machines to be dam-
aged or stolen, resulting in the loss of any important data
stored on them. Even in the best case, when such data can
be recovered from backup, the time consuming process of re-
constituting the state of the lost machine on another device,
results in a huge disruption in critical computing service for
the user.

We introduce MobiDesk, a mobile virtual desktop com-
puting hosting infrastructure. With wire-speed network tech-
nologies scaling at faster Moore’s exponents than silicon,
MobiDesk leverages rapid improvements in network band-
width, cost, and ubiquity to address the limitations of the
current personal computing model. MobiDesk uses the net-
work to decouple a user’s desktop computing session from
the end-user device by moving all application logic to host-
ing providers. In this manner, end-user devices are simply
used to transmit user input and display application output,
allowing them to be simple stateless clients. MobiDesk also
decouples a user’s desktop computing session from the un-
derlying operating system and server instance, allowing a
user’s entire computing environment to be migrated trans-
parently from one server to another. This enables a server to
be brought down for maintenance and upgraded in a timely
manner with minimal impact on the availability of a user’s
computing services. Once the original machine has been
updated, the user’s computing session can be migrated back
and continue to execute even though the underlying operat-
ing system may have changed. MobiDesk ensures that any
network connections associated with the user’s computing
session are maintained, even as the session is migrated from
one machine to another. MobiDesk provides these benefits
without modifying, recompiling, or relinking applications or
operating system kernels. MobiDesk requires no changes to
clients other than being able to execute a simple user-space
application to process and display input and output.
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MobiDesk provides a mobile virtual desktop computing
environment by introducing a thin virtualization layer be-
tween a user’s computing environment and the underlying
system. MobiDesk focuses on virtualizing three key sys-
tem resources: display, operating system, and network. Mo-
biDesk virtualizes display resources by providing a virtual
display driver that efficiently encodes and redirects display
updates from the server to an end-user device. MobiDesk
virtualizes operating system resources by providing a virtual
private namespace for each desktop computing session. The
namespace offers a host independent virtualized view of an
operating system, enabling the session to be transparently
migrated from one server to another. MobiDesk virtualizes
network resources by providing virtual address identifiers for
connections, and a transport-independent proxy mechanism.
Together, they preserve all network connections associated
with a user’s computing session, even if it is migrated from
one server to another inside the MobiDesk server infrastruc-
ture.

The MobiDesk hosted desktop computing approach pro-
vides a number of important benefits over current computing
approaches:

• High-availability and reliable application services: Be-
cause MobiDesk is designed to work with unmodified
legacy applications and commodity operating systems,
it offers the potential to bring about more reliable com-
puting without giving up the large investments already
made in the existing software base. Furthermore, de-
coupling from the underlying hardware and operat-
ing system allows applications to be moved anywhere,
and in particular, migrated off faulty hosts, and be-
fore maintenance and upgrades. In contrast to today’s
long periods of service downtime due to maintenance
and upgrades, MobiDesk enables hardware and op-
erating systems to be upgraded in a timely manner
with minimal impact on application service availabil-
ity — by migrating applications to another machine
that has already been updated. With MobiDesk, sys-
tem administrators no longer need to schedule down-
time in advance and in cooperation with all the users,
thereby closing the vulnerability window of unrepaired
systems.

• Persistence and continuity of business logic: MobiDesk
moves away from the current model of simply back-
ing up file data to secure remote locations, and in-
stead protects entire computing environments by run-
ning hosting providers in secure remote locations. This
enables academic, business, and government institu-
tions to function much more effectively in times of
crisis. Restoring an organization’s local computing
infrastructure from backup consequent to a crisis is
an extremely slow, time consuming process that is in-
creasingly ineffective given the scale of IT infrastruc-
ture being deployed today. MobiDesk offers a differ-
ent, improved model of continuous uptime, especially
during a crisis, when infrastructure availability is most
crucial.

• Secure, low-cost global access and transparent user mo-
bility: MobiDesk client access devices just need to be
able to connect to the Internet. They do not need
to provide complex computing functionality, making

it unnecessary to continuously upgrade to more pow-
erful desktop machines. Simpler, lower-cost, possibly
longer battery life client access devices can be made
more readily available for such a service. These de-
vices may come in many shapes and sizes, from desktop
machines with megapixel displays to handheld devices
with pocket sized screens. Furthermore, because all
persistent user state is maintained on the servers, users
are able to securely access, and freely move among any
client access devices and pick up right where they left
off.

• On-demand access to application and computational
resources: By multiplexing a large pool of shared re-
sources among many users, an individual can gain ac-
cess to substantially more applications and resources
than can be afforded on one’s local desktop computer.
In terms of applications, MobiDesk can provide a wider
range of affordable application services on multiple op-
erating system platforms by amortizing costs over a
large number of users. Since not all applications will
be in use by all users at one time, statistical multi-
plexing can serve a larger number of users with fewer
software licenses. In terms of resources, a user can be
given resource allocations which can be scaled up or
down as necessary. Instead of having to throw away
their existing local desktop machines every time they
need more compute power, users can just ask their
service provider to scale up their allocation.

• Bridging the information gap: Contrasting with to-
day’s environment of information “haves” and “have-
nots”, MobiDesk can be accessed by low-cost client
devices to deliver secure service on a subscription ba-
sis, offering a societally better way of providing ac-
cess to computing as widely as possible. Remote com-
puting and storage services can be paid-for using a
subscription-based or use-based economic model that
follows current Internet access or telephone pricing
policies. A MobiDesk provider could supply basic com-
puting, including a complete suite of desktop produc-
tivity tools, for just a few dollars a month. Video-
on-demand service, online gaming, and other multi-
media services could be obtained from the same or
other providers for additional small fees. Furthermore,
the more centralized service and management model
provides lower total cost of ownership across all ap-
plications, making computing more widely affordable.
More importantly, MobiDesk enables client devices to
be easier to manage and use by removing the local sys-
tem complexity associated with current software up-
grade cycles, making computing more accessible to a
wider population of users.

This paper presents the design and implementation of
MobiDesk. Section 2 presents the overall MobiDesk sys-
tem architecture and usage model. Section 3 describes the
MobiDesk display virtualization mechanism. Section 4 de-
scribes the MobiDesk operating system virtualization mech-
anism. Section 5 describes the MobiDesk network virtu-
alization mechanism. Section 6 presents experimental re-
sults measuring MobiDesk system performance and asso-
ciated overhead in the context of real desktop computing
applications. Section 7 discusses related work. Finally, we
present some concluding remarks.

2



��������
�

�����	
��	����


���
	�

��

�������

�����	
��	����

�������

�����

�������	����


���
	�

�
����

���

�������
������

Figure 1: MobiDesk Architecture

2. OVERVIEW OF SYSTEM ARCHITEC-
TURE

MobiDesk is architected as a proxy-based server cluster
system, comparable to systems deployed today by applica-
tion service providers. The overall architecture of the system
is depicted in Figure 1. MobiDesk is composed of a proxy,
a group of back-end session servers connected in a LAN, a
storage server infrastructure, and a number of external, het-
erogeneous clients through which users access the system.

The proxy acts as a front-end that admits service requests
from clients across the Internet, and dispatches the requests
to the appropriate back-end application servers. The proxy,
operating at layer 7, exposes a single entry point to the
clients, and employs suitable admission and service dispatch-
ing policies. The back-end compute servers host completely
virtualized environments within which the computing ses-
sions of MobiDesk’s users run. The network storage server
infrastructure is used for all persistent file storage. The
clients are merely inputing and outputting devices connected
to the servers across the Internet.

Users interact with their MobiDesk sessions through a
thin-client session viewer, a simple device or application
that relays the user’s input and the session’s output be-
tween the client and the server through a secure channel.
Each user in the system is assigned a username and pass-
word. Upon the first login, the proxy performs appropriate
authentication, and connects the user to a MobiDesk session
server. The session server creates a virtual private environ-
ment that is populated with a complete set of operating
system resources and desktop applications. In contrast to
the traditional centralized computing model where users are
aware of each others’ presence and activities, MobiDesk’s
sessions are isolated from one another and the underlying
server environment. To the user, the session appears no
different than a private computer, even though the user’s
session may coexist with many other sessions on a shared
server. When the client disconnects, the session continues
to run on the MobiDesk server, unless the user explicitly
logs out. On future connections, the session will be in the
same state it was when the user last disconnected.

By providing a virtual private environment for each user,
MobiDesk is able to dynamically relocate sessions to meet
load balancing, system maintenance and/or quality of ser-
vice requirements. Sessions can be checkpointed and mi-
grated transparently at any point in time. To keep track
of the sessions as migration occurs, MobiDesk implements

a session cookie mechanism. As new sessions are created,
the proxy generates a unique cookie that is passed to the
hosting servers and associated with the new session. When-
ever a session is migrated, the destination server uses the
cookie to inform the proxy of the new location. Finally, the
next time the user logs in, the proxy will use the cookie to
identify the server where the user’s session is being hosted.

To provide a private and mobile environment for user ses-
sions, MobiDesk virtualizes three key resources: display,
operating system, and network. MobiDesk virtualization
is designed to work with existing unmodified applications,
operating system kernels, and network infrastructure and
protocols. The three components work in concert to create
a completely virtualized environment for client computing
sessions.

MobiDesk virtualizes the server display by providing a
virtual display driver. The display driver intercepts draw-
ing commands from user’s applications, and translates the
commands into a display protocol between the client and
the server. MobiDesk display virtualization focuses on the
importance of a latency sensitive design for interactive com-
puting. It also anticipates the kind of high bandwidth net-
work access that is becoming increasingly cost effective and
accessible in WAN environments [1]. For example, South
Korea is building a nationwide Internet access infrastruc-
ture to make speeds up to 100 Mbps available to the home
by 2010 [24].

MobiDesk operating system virtualization provides a vir-
tual private namespace for each hosted client computing ses-
sion. For example, each computing session contains its own
host independent view of OS resources, such as PID/GID,
IPC, memory, file system, and devices. MobiDesk virtual-
ization operates at a finer granularity than virtual machine
approaches such as VMware [52] by virtualizing individual
computing sessions instead of complete operating system en-
vironments. As a result, computing sessions can be decou-
pled from the underlying operating system and migrated to
other servers. This enables high-availability even in the pres-
ence of server hardware and operating system maintenance
and upgrades.

MobiDesk network virtualization provides persistent net-
work connections for client computing sessions even as they
move among servers in a MobiDesk cluster. All connections
operate through the MobiDesk proxy. Similar to operating
system virtualization, MobiDesk virtualizes network connec-
tions with a virtual private namespace for transport connec-
tion identifiers, such as IP address and port number, on both
the proxy and the servers. These virtual identifiers remain
constant and are simply translated to the underlying phys-
ical network identifiers as a session moves amongst servers
at different physical network locations. MobiDesk network
virtualization provides persistent connections from mobile
client computing sessions to outside hosts without running
any software on the outside hosts and without any changes
to the existing network infrastructure.

3. DISPLAY VIRTUALIZATION
To make MobiDesk a viable replacement to the tradi-

tional desktop computing model, it needs to be able to de-
liver the look and feel of all unmodified desktop applications
end-users expect. MobiDesk must work within the frame-
work of existing display systems, intercepting display com-
mands from unmodified applications and redirecting these
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Command Description

RAW Display raw pixel data at a given
location and size

COPY Copy frame buffer area to speci-
fied coordinates

SFILL Fill an area with a given pixel
color value

BITMAP Fill a region using a bitmap im-
age

PFILL Tile a pixmap rectangle in a
given region

Table 1: MobiDesk Protocol Display Commands

commands to remote clients. To provide good WAN perfor-
mance, the virtualization must intercept display commands
at an appropriate abstraction layer to provide sufficient in-
formation to optimize the processing of display commands
in a latency sensitive manner. Furthermore, to support
transparent user mobility and eliminate client administra-
tion complexity, MobiDesk should support the use of thin,
stateless clients, by ensuring that all persistent display state
is stored in the server infrastructure.

Given that traditional display systems are structured in
multiple abstraction layers, there are a number of possible
ways in which MobiDesk can interact with existing display
systems. We can loosely categorize display system structure
into three layers: application, middleware, and hardware.
The application layer is the top layer with which applica-
tions interact. It presents a high-level model of the overall
characteristics of the display system. These characteristics
include descriptions of the operation and management of
windows, input mechanisms, and display capabilities of the
system. These capabilities may range from basic 2D dis-
play, to complex operations involving transparency, blends,
3D transformations, and the display of multimedia content.
The middleware layer sits between the high-level application
layer and the low-level video hardware layer. It is responsi-
ble for creating a hardware-independent abstraction of the
display hardware to meet the requirements of the display
system and its applications. To maintain consistency across
hardware with differing abilities, the middleware layer is
provisioned with fallback mechanisms and software routines
that can implement missing hardware features. The video
hardware layer is a low-level, hardware-dependent layer that
exposes the video hardware to the display system. It is im-
plemented as a set of device drivers responsible for trans-
lating between the middleware’s abstract display operations
and the commands understood by the display hardware.

MobiDesk does not intercept at the application layer be-
cause that requires a significant amount of application logic
and computational power on the client for translating high-
level commands. This in turn, would limit the range of
target client architectures. Intercepting at the application
layer also results in direct synchronization between applica-
tions and the client, which can reduce display performance
in higher latency WAN environments. MobiDesk also does
not intercept at the middleware layer because that would re-
quire it to reimplement substantial display system function-
ality, instead of leveraging continuing advances in existing
middleware implementations, such as XFree86.

MobiDesk display virtualization is designed instead as a
virtual video device driver that intercepts display commands

at the video hardware layer, by providing a separate virtual
video device for each computing session. Rather than send-
ing display commands to local display hardware, the vir-
tual video driver packages up display commands associated
with a user’s computing session and sends them over the
network to a remote client. For this purpose, MobiDesk im-
plements a simple, low-level, minimum-overhead protocol,
as described in Table 1. The protocol mimics the opera-
tions most commonly found in display hardware, allowing
clients to do little more than forward protocol commands
to their local video hardware, thus reducing the latency of
display processing. To provide security, all protocol traf-
fic is encrypted using the standard RC4 [44] stream cipher
algorithm. MobiDesk’s video hardware layer approach al-
lows it to take full advantage of existing infrastructure and
hardware interfaces, while maximizing client resources and
requiring minimal computation on the client. Furthermore,
new video hardware features can be supported with at most
the same amount of work necessary for supporting them in
traditional desktop display drivers. While there is some loss
of semantic display information at the low-level video de-
vice driver interface, our experiments with desktop applica-
tions such as web browsers, indicate that the vast majority
of application display commands issued can be mapped di-
rectly to standard video hardware primitives. Furthermore,
we show in Section 6 that the simpler display virtualization
used by MobiDesk can provide superior display performance
compared to other approaches.

To deliver good performance in WAN environments, the
MobiDesk display virtualization architecture couples its vir-
tual video device driver approach with other latency sensi-
tive display mechanisms. In particular, client display hard-
ware resources are exported to the server and leveraged to
reduce the latency of display processing. For example, Mo-
biDesk provides direct video support by leveraging alter-
native YUV video formats natively supported by almost all
off-the-shelf video cards available today. Video data can sim-
ply be transferred from the server to the client video hard-
ware, which automatically does inexpensive, high speed,
color space conversion and scaling. As another example, Mo-
biDesk leverages cursor drawing support available in com-
modity video cards in use today. MobiDesk uses local cursor
drawing in response to mouse movements and maintains lo-
cal cursor state at the client. Cursor changes still come
from the server, but system response time is improved by
avoiding network latency with any cursor drawing that does
not result in cursor changes. As a final example, MobiDesk
transparently supports varying client screen sizes by auto-
matically resizing updates to fit within the client viewport.
For mobile devices with small screens, this translates in re-
duced bandwidth consumption and improved performance.

MobiDesk provides two important server-side mechanisms
for improving performance in WAN environments. The first
mechanism is the use of a server push model for sending dis-
play updates to the client. As soon as display updates are
generated on the server, they are delivered to the client.
Clients are not required to explicitly request display up-
dates, which add additional network latency to command
processing. The second mechanism is the use of display
command scheduling to improve the responsiveness of the
system. MobiDesk employs a Shortest-Remaining-Size-First
(SRSF) preemptive command scheduler. SRSF is analogous
to Shortest-Remaining-Processing-Time scheduling, which
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is known to be optimal for minimizing mean response time
in an interactive system. In display applications, short jobs
are normally associated with text and general GUI layout
components, which are critical to the usability of the sys-
tem. On the other hand, large jobs are normally lower prior-
ity “beautifying” GUI elements, such as image decorations,
desktop backgrounds and web page banners.

Finally, MobiDesk supports thin, stateless display clients
by storing all session state at the respective session server.
Although MobiDesk takes advantage of client resources when
available, all client state is considered temporary and de-
stroyed upon client disconnect. When a remote client con-
nects to the MobiDesk infrastructure, the server running the
user’s computing session transfers the current session state
to the client. For the duration of the connection, the client
forwards input events to the server, which in turn forwards
display updates back to the client. The client at no point
has an intermediate session state differing from the server.
Furthermore, if allowed by the user, multiple clients can
be connected to the same session at the same time, all of
them accessing the same centralized view distributed from
the server. When a client eventually disconnects, it leaves
no state behind in the local computer.

4. OPERATING SYSTEM VIRTUALIZATION
MobiDesk encapsulates user sessions within a host inde-

pendent, virtualized view of the operating system. Unlike
traditional operating systems, each session is a self contained
unit that can be isolated from the system, checkpointed to
secondary storage, migrated to another machine, and trans-
parently restarted. This is made possible because each com-
puting session has its own virtual private namespace, which
provides the only means for processes to access the under-
lying operating system. To guarantee correct operation of
unmodified applications, MobiDesk session virtualization is
completely transparent. This is accomplished by providing
a traditional environment with unchanged application inter-
faces and access to operating system services and resources.

The namespace is private in that only processes within
the session can see the namespace, and the namespace in
turn masks out resources that are not contained in the ses-
sion. Processes inside the session appear to one another
as normal processes, and they are able to communicate us-
ing traditional IPC mechanisms. On the other hand, no
IPC interaction is possible across the session’s boundaries,
because outside processes are not part of the private names-
pace. Processes inside a session and those outside of it are
only able to communicate over RPC mechanisms, tradition-
ally used to communicate across computers.

The namespace is virtual in that all operating system re-
sources, including processes, user information, files, and de-
vices, are accessed through virtual identifiers. These virtual
identifiers are distinct from the host-dependent, physical re-
source identifiers used by the operating system. The ses-
sion’s namespace uses the virtual identifiers to provide a
host-independent view of the system, which remains consis-
tent throughout a process’s and session’s lifetime. Since the
session’s namespace is separate from the underlying names-
pace, it can preserve naming consistency for its processes,
even if the physical namespace changes, as may be the case
when sessions are migrated across computers.

Operating system resource identifiers, such as process IDs
(PIDs), must remain constant throughout the life of a pro-

cess to ensure its correct operation. However, when a pro-
cess is moved from one operating system instance to another,
there is no guarantee that the destination system will pro-
vide the same identifiers to the migrated process; those iden-
tifiers may in fact be in use by other processes in the system.
The session’s namespace addresses these issues by providing
consistent, virtual resource names. Names within a session
are trivially assigned in a unique manner in the same way
that traditional operating systems assign names, but such
names are localized to the session. Since the namespace is
virtual, there is no need for it to change when the session is
migrated, ensuring that identifiers remain constant through-
out the life of the process, as required by applications that
use such identifiers. Since the namespace is private to a
given session, processes within the session can be migrated
as a group, while avoiding resource naming conflicts among
processes in different sessions. Finally, the private virtual
namespace enables sessions to be securely isolated from each
other by providing complete mediation to all operating sys-
tem resources. Since the only resources within each session
are the ones that are accessible to the owner of the session,
a compromised session would be unable to harm any other
user’s session.

4.1 Session Virtualization
MobiDesk virtualizes sessions by using mechanisms that

translate between the session’s virtual resource identifiers
and the operating system resource identifiers. For every re-
source accessed by a process in a session, the virtualization
layer associates a virtual name to an appropriate operating
system physical name. When an operating system resource
is created for a process in a session, the physical name re-
turned by the system is caught, and a corresponding private
virtual name created and returned to the process. Similarly,
any time a process passes a virtual name to the operating
system, the virtualization layer catches and replaces it with
the corresponding physical name. The key virtualization
mechanisms used are a system call interposition mechanism
and the chroot utility with file system stacking for file sys-
tem resources.

Session virtualization uses system call interposition to vir-
tualize operating system resources, including process identi-
fiers, keys and identifiers for IPC mechanisms such as sema-
phores, shared memory, and message queues, and network
addresses. System call interposition wraps existing system
calls to check and replace arguments that take virtual names
with the corresponding physical names, before calling the
original system call. Similarly, wrappers are used to cap-
ture physical name identifiers that the original system calls
return, and return corresponding virtual names to the call-
ing process running inside the session. Session virtual names
are maintained consistently as a session migrates from one
machine to another and are remapped appropriately to un-
derlying physical names that may change as a result of mi-
gration. Session system call interposition also masks out
processes inside of a session from processes outside of the
session to prevent any interprocess host dependencies across
the session boundary.

Session virtualization employs the chroot utility and file
systems stacking to provide each session with its own file sys-
tem namespace. In the simplest case, where sessions are only
checkpointed and restarted on the same computer, the file
system can be composed of loopback mounts from the host
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computer. In MobiDesk’s centralized hosting infrastructure,
the session’s file system is composed from remote mounts via
a network file system such as NFS, which guarantees that
the same files can be made consistently available as a session
is migrated from one computer to another. More specifically,
when a session is created or moved to a host, a private direc-
tory is created in the host. This directory, named according
to the session identifier, serves as a staging area for the ses-
sion’s virtual file system. Within the directory, the various
network accessible directories that the session is configured
to access, will be mounted from a network file server. For
example, from a Unix-centric viewpoint, this set of directo-
ries could include /etc, /lib, /bin, /usr, and /tmp. The
chroot system call is then used to set the staging area as the
root directory for the session, thereby achieving file system
virtualization with negligible performance overhead. This
method of file system virtualization provides an easy way
to restrict access to files and devices from within a session.
This can be done by simply not including file hierarchies and
devices within the session’s file system namespace. If files
and devices are not mounted within the session’s virtual file
system, they are not accessible to the session’s processes.

An alternative MobiDesk usage model to enable discon-
nected operation without continued access to file servers
would be to leverage the use of increasingly popular portable
storage devices. In this scenario, the user checkpoints and
saves the session and its required file system to a portable
device, effectively creating a pocket-session, a complete com-
puter environment which can be carried around in a user’s
pocket. To migrate to another computer, the user only needs
to plug the portable device to the destination computer, and
restart the session within the file system stored in the device.
This functionality may be useful to users running sessions
without the need for sensitive data, that plan to move from
a high network connectivity location to a low network con-
nectivity location.

Commodity operating systems are not built to support
multiple namespaces securely. Therefore, session virtualiza-
tion must address the fact that there are multiples ways to
break out of a chrooted environment, especially when the
chroot system call is allowed to be used in a session. The
session’s file system virtualization enforces the chrooted en-
vironment and ensures that the session’s file system is only
accessible to processes within the given session by using a
simple form of file system stacking to implement a barrier.
This barrier directory prevents processes within the session
from traversing it. Since the processes are not allowed to
traverse the directory, they are unable to access files outside
of the session’s file system namespace.

In order for a session to fully replace a regular computer,
the session has to allow processes to run as the privileged
root user. For instance, programs such as ping and trace-

route that create raw sockets, and passwd that is used to
change system resources. Because root’s UID 0 is treated
specially by the operating system kernel, session virtual-
ization also treats UID 0 processes inside of a session spe-
cially, to prevent them from breaking the session abstrac-
tion. While a session can be configured for administrative
reasons to allow full privileged access to the underlying sys-
tem, we focus on the case of sessions for running application
services which do not need to be used in this manner.

While a process is running in user space, the UID it runs as
does not have any effect. The UID only has an impact when

the process tries to access the underlying kernel via one of
the entry points, specifically devices and system calls. Since
a session already provides a virtual file system that includes
a virtual /dev directory with a limited set of secure devices,
the device entry point is already secured. The only system
calls of concern are those that could allow a process owned
by root to break the session abstraction. However, only a
small number of system calls can be used for this purpose.
Session virtualization classifies these system calls into three
classes which need to be protected.

The first class of system calls are those that only affect the
host system and serve no purpose within a session. Exam-
ples of these system calls include those that load and unload
kernel modules or that reboot the host system. Since these
system calls only affect the host, they would break the ses-
sion security abstraction by allowing processes within it to
make system administrative changes to the host. System
calls that are part of this class are therefore made inacces-
sible by default to processes running within a session.

The second class of system calls are those that are forced
to run unprivileged. Just like NFS, by default, “squashes”
root on a client machine to act as user nobody, session vir-
tualization forces privileged processes to act as the nobody

user when it wants to make use of these system calls. These
system calls include those that set resource limits, and ioctl

system calls. Since system calls such as setrlimit and nice

can allow a privileged process to increase its resource limits
beyond predefined limits imposed on session processes, priv-
ileged processes are by default treated as unprivileged when
executing these system calls within a session. Similarly, the
ioctl system call is a system call multiplexer that allows
any driver on the host to effectively install its own set of
system calls. Since the ability to audit the large set of pos-
sible system calls is impossible given that sessions may be
deployed on a wide range of machine configurations, session
virtualization conservatively treats access to this system call
as unprivileged by default.

The final class of system calls are calls that are required for
regular applications to run, but have options that will give
the processes access to underlying host resources, breaking
the session abstraction. Since these system calls are required
by applications, the session checks all their options to en-
sure that they are limited to resources that the session has
access to, making sure they are not used in a manner that
breaks the session abstraction. For example, the mknod sys-
tem call can be used by privileged processes to make named
pipes or files. It is therefore desirable to make it available
for use within a session. However, it can also be used to cre-
ate device nodes that provide access to the underlying host
resources. To limit how the system call is used, the session
system call interposition mechanism checks the options of
the system call and only allows it to continue if it is not
creating a device.

4.2 Session Migration
MobiDesk provides the ability to maintain session avail-

ability in the presence of server downtime due to operat-
ing system and hardware upgrades. This is accomplished
through a checkpoint-restart mechanism that allows sessions
to be migrated between computers with different hardware
and operating system kernels. MobiDesk is limited to mi-
grating between machines with a common CPU architecture,
and where kernel differences are limited to maintenance and
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security patches. These patches often correspond to changes
in minor version numbers of the kernel. In particular, the
Linux 2.4 kernel has more than 25 minor versions. Migration
is limited to these instances because major version changes
are allowed to break application compatibility, which may
cause running processes to break. However, even with mi-
nor versions changes, there can be significant changes in
kernel code. For example, during the Linux 2.4 series of
kernels, the entire VM subsystem was extensively modified
to change the page replacement mechanism. Similarly, mi-
gration is limited to scenarios where the application’s exe-
cution semantics, such as how threads are implemented or
dynamic linking is performed, stay constant. On the Linux
kernel, this is not an issue as these semantics are enforced by
user-space libraries. Since the session’s user-space libraries
migrate with it, the semantics stay constant. While Mo-
biDesk sessions protect the host from malicious code exe-
cuted within a session, migrating away from or to a host
that has already been compromised is beyond the scope of
this paper.

To support migration across different kernels, MobiDesk’s
checkpoint-restart mechanism employs an intermediate for-
mat to represent the state that needs to be saved. On check-
point, the process image is saved and digitally signed to en-
able the restart process to verify its integrity. Although the
internal state that the kernel maintains on behalf of pro-
cesses can be different across kernels, the high-level proper-
ties of the process are much less likely to change. MobiDesk
captures the state of a process in terms of this higher-level
semantic information rather than the kernel specific data.
For example, part of the state associated with a Unix socket
connection consists of the directory entry of the socket, its
superblock information, and a hash key. It may be pos-
sible to save all of this state in this form and successfully
restore on a different machine running the same kernel. But
this representation is of limited portability across different
kernels. On the other hand, a high-level representation con-
sisting of a four tuple: {virtual source pid, source fd, virtual
destination pid, destination fd}, is highly portable. This
is because the semantics of a process identifier and a file
descriptor are standard across different kernels.

MobiDesk’s intermediate representation format is chosen
such that it offers the degree of portability needed for mi-
grating between different kernel minor versions. If the rep-
resentation of state is too high-level, the checkpoint-restart
mechanism could become complicated and impose additional
overhead. For example, the MobiDesk system saves the ad-
dress space of a process in terms of discrete memory regions
called VM areas. As an alternative, it may be possible to
save the contents of a process’s address space and denote
the characteristics of various portions of it in more abstract
terms. However, this would call for an unnecessarily compli-
cated interpretation scheme and make the implementation
inefficient. The VM area abstraction is standard even across
major Linux kernel revisions. MobiDesk views the VM area
abstraction as offering sufficient portability in part because
the organization of a process’s address space in this manner
has been standard across all Linux kernels and has never
changed since its inception.

MobiDesk leverages high-level native kernel services in
order to transform the intermediate representation of the
checkpointed image into the complete internal state required
by the target kernel. Continuing with the previous example,

MobiDesk restores a Unix socket connection using high-level
kernel functions as follows. First, two new processes are cre-
ated with virtual PIDs as specified in the four tuple. Then,
each one creates a Unix socket with the specified file de-
scriptor and one socket is made to connect to the other.
This procedure effectively recreates the original Unix socket
connection without depending on many internal kernel de-
tails.

This use of high-level functions helps with general porta-
bility when using MobiDesk for migration. Security patches
and minor version kernel revisions commonly involve modi-
fying the internal details of the kernel while high-level prim-
itives remain unchanged. As such high-level functions are
usually made available to kernel modules through exported
kernel symbol interface, the MobiDesk system is able to per-
form cross-kernel migration without requiring modifications
to the kernel.

To eliminate possible dependencies on low-level kernel de-
tails, MobiDesk’s checkpoint-restart mechanism requires pro-
cesses to be suspended prior to being checkpointed. Sus-
pending processes creates a quiescent state necessary to guar-
antee the correctness of the checkpointed image, and it also
minimizes the amount of information that needs to be saved.
As a representative example, consider the case of semaphore
wait queues. Although semaphore values can be easily ob-
tained and restored through well known interfaces, saving
and restoring the state of the wait queue involves the ma-
nipulation of kernel internals. However, by taking advantage
of existing semantics which direct the kernel to release a pro-
cess from a wait queue upon receipt of a signal, MobiDesk is
able to empty the wait queues by suspending all processes,
and therefore avoid having to save the state of the queue.

Finally, we must ensure that any changes in the system
call interfaces are properly accounted for. As MobiDesk has
a virtualization layer that uses system call interposition to
maintain namespace consistency, a change in the semantics
for any system call intercepted could be an issue in migrating
across different kernel versions. But such changes usually do
not occur, as it would require system libraries to be rewrit-
ten. In other words, MobiDesk virtualization is protected
from such changes in the same way legacy applications are
protected. However, new system calls could be added from
time to time. Such system calls could have implications to
the encapsulation mechanism. For instance, across all Linux
2.4 kernels, there were two new system calls that used iden-
tifiers that needed to be intercepted and virtualized, gettid
and tkill.

5. NETWORK VIRTUALIZATION
Networking support for MobiDesk sessions must address

two issues:

• Multiple sessions on the same server may run the same
service, e.g. two sessions may both run the apache
server, however, only one of them can listen on port
80.

• Ongoing network connections must be preserved when
a session is migrated from one server to another.

When all hosting servers are in the same subnet, the two
issues can be addressed relatively easily using existing tech-
nologies with minor enhancements from MobiDesk. Each
session is assigned a unique IP address from a pool main-
tained by a DHCP server when it is first created. For exam-
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Figure 2: Key Problems of Connection Migration
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Figure 3: MobiDesk Network Virtualization

ple, the servers may occupy IP address range 192.168.1.2 -
192.168.1.50, and the rest of 192.168.1.5 - 192.168.1.254 may
be assigned to MobiDesk sessions. The IP address assigned
to a session is created as an alias of the hosting server’s pri-
mary IP address. Multiple aliases, each corresponding to
a different session, can be created on a server. MobiDesk
privatizes the aliases such that a session only sees its own
alias, and cannot interfere with traffic of other sessions on
the same server.

Since each session has its own IP address, two sessions on
the same server can both listen to port 80, bound to their
individual private IP address. When a session is migrated
from one server to another, the private IP address of the
session remains unchanged; it is simply (re)created as an
alias of the new hosting servers primary IP address. ARP
resolves the MAC address change at the link layer and the
migration is transparent to the network layer and above.
Ongoing network connections of the session therefore stay
intact. Note that ARP caching may cause the migration to
be “invisible” to the proxy until its ARP cache times out,
which is typically a few minutes. This can be easily ad-
dressed by having the migrated session send a “gratuitous”
ARP request asking the MAC address of its own IP, which
allows the proxy to immediately invalidate its ARP cache
for the IP in question. “Gratuitous” ARP requests are com-
monly used to detect duplicate IP address, and to allow a
backup server’s NIC to take over a primary server’s NIC.

While it is possible to have the entire private network
behind the proxy to be in a single subnet, it is often desirable
to have separate subnets for scalability and management
reasons. In this case, when a session is migrated across
subnets, its private IP address can no longer persist, since
on the destination subnet the address is no longer valid. As

a result, two types of problems can occur, as we illustrate
in Figure 2. Note that we omit port numbers for simplicity.

We see that when session1 with IP10 migrates from server
IP1 to IP2, its transport connection [IP10, IP0] must persist.
However, its IP address IP10 cannot persist because IP2 is
on a different subnet. In addition, after session1 with IP10
migrates to server IP2, another session2 may reuse IP10 on
server IP1 (or another server) and create another connec-
tion [IP10, IP0]; a conflict is created since the proxy will see
two identical connections [IP0, IP10]. A potential solution is
to use MobileIP. However, MobileIP requires assigning each
session a permanent home address that cannot be reused
by other sessions (to avoid conflicts as described later in
this section). This is difficult since MobiDesk sessions are
dynamically created, volatile entities. One can potentially
adopt a solution that takes the initial physical address as-
signed to a session as its home address. However, this still
requires additional management infrastructure to (1) assign
dynamic address on a per session basis rather than per host
basis, and (2) guarantee that the dynamically assigned home
address is never reused by any other sessions, even after it
has migrated away from its initial subnet. To effectively ad-
dress these problems without incurring additional manage-
ment complexity, we have designed an integrated solution of
our own.

To address the inconsistency problem on the MobiDesk
server, MobiDesk associates each session with two IP ad-
dresses, one is a virtual address exposed to the transport
layer and above and the other is a physical address seen
only at the network layer and below. The virtual address
stays constant for the lifetime of the session while the phys-
ical address changes whenever the session migrates. The
physical address is obtained from a DHCP server, as in the
case of a single subnet, but must change when the session
is migrated across subnets. There are two ways to assign
the virtual address. By default, the virtual address is equal
to the initial physical address when the session is created
and stays unchanged thereafter. Alternatively, the virtual
address can be a predefined value that is constant across all
sessions. MobiDesk translates the virtual address to the cur-
rent physical address (and vice versa) when the session mi-
grates. For example, in Figure 3, after migration, session1’s
virtual address IP10 is unchanged while its physical address
is assigned by the DHCP server to be IP20 and created as
an alias on server IP2. The proxy translates [IP0, IP10] into
[IP0, IP20] while the server IP2 translates [IP20, IP0] into
[IP10, IP0]. Since the virtual address never changes, the
migration is transparent to the transport and above layers.

One potential solution to the conflict problem on the Mo-
biDesk proxy is to require that a physical address, once as-
signed to a session, is never reused until the session finishes,
even after the session has migrated to another subnet. How-
ever, this results in undesirable dependency of a session on a
trail of addresses if it is migrated many times and new con-
nections are opened between each migration. MobiDesk’s
solution is to privatize virtual addresses, i.e., to associate
virtual addresses with separate private virtual network in-
terfaces which provide a per-connection address namespace.
Instead of having all connections share the same physical
interface, each connection is assigned its own private virtual
network interface card (VNIC). A VNIC is simply a software
emulation of a NIC at the link layer that appears exactly the
same as a NIC to the network and above layers. As a re-
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sult, two connections using the same virtual IP address due
to address reuse can peacefully coexist on the same server,
since they are bound to their own private VNIC.

To support per-connection address space, MobiDesk aug-
ments the traditional connection tuple with connection la-
bels to identify the VNIC to which a connection is bound. A
connection has two labels, independently and uniquely cho-
sen by the MobiDesk proxy and the server at the time when
the connection is setup. The two sides also exchange their la-
bels at connection setup time. Before a session is migrated,
the labels are not used since the tuple along is enough to
identify the connections of the session. After a session is mi-
grated, both sides will attach its peer’s label learned at con-
nection setup time for all connections between them. The
labels allow the connections to be uniquely identified even
when a session’s previous physical address is reused. We
illustrate these ideas using the example in Figure 3.

In Figure 3, when the connection [IP0, IP10] was setup
for session1 while it was on server IP1, the proxy creates a
VNIC for the connection and sends its label1 for the connec-
tion to server IP1. Similarly, session1 on server IP1 sends
its label for the connection to the proxy (the actual label
exchange is not shown). Before session1 was migrated, its
virtual address, which equals its physical address IP10, can-
not be reused by other sessions; therefore the virtual address
alone is enough to identify the connection [IP0, IP10] and
labels are not used in the absence of migration. However,
after session1 is migrated to server IP2, all packets from
session1 to the proxy will have label1 attached to them.
This allows the proxy to uniquely identify the connection
[IP0, IP10] that belongs to session1, instead of anther ses-
sion2 that reuses address IP10. For example, when session2
reuses address IP10 and creates a connection [IP10, IP0] be-
tween server IP1 and the proxy after session1 is migrated,
the proxy will now have no problem letting both connections
coexist. Even though they have exactly the same tuple [IP0,
IP10] at the transport layer level, they each are bound to
a different VNIC (with the same address IP0), guarantee-
ing conflict-free operation. Remember that when session2
creates its connection [IP0, IP10], connection labels will be
exchanged between server IP1 and the proxy. But since ses-
sion2 has not been migrated, the labels are not used and
the connection is solely identified by the tuple [IP0, IP10].
In other words, packets belonging to session2’s connection
will not have a label attached while packets belonging to
session1’s connection will have label1 attached. This allows
the proxy to correctly identify both connections and per-
form virtual-physical translation as needed, e.g., session1’s
connection is mapped to [IP0, IP20] while no mapping is
necessary for session2’s connection.

MobiDesk’s network virtualization and privatization may
raise concerns about the scalability of the proxy. We will
show in the experimental results section that MobiDesk does
not adversely affect the scalability of the proxy, because the
mechanisms for supporting virtualization and privatization
are all simple functions, such as address translation and in-
terface redirection.

6. EXPERIMENTAL RESULTS
We have implemented a prototype MobiDesk system for

serving Linux desktop computing environments. On the
server-side, our prototype consists of a virtual display driver
module for XFree86 [53] and a loadable kernel module for
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Figure 4: Experimental Testbed

operating system and network virtualization. The display
driver runs as part of the display system of the hosting
server, and the kernel module is loaded at the hosting server
and the proxy. The server-side of our prototype works with
unmodified Linux applications and any off-the-shelf Linux
2.4 kernel. On the client-side, our prototype provides a
small client application that can be downloaded and run
on any unmodified client to provide MobiDesk functional-
ity. We have implemented both Xlib and Java versions of
the MobiDesk client application, which can run on both
Unix/Linux and Windows clients. We present experimen-
tal results using our Linux MobiDesk prototype to quantify
its overhead and demonstrate its performance on various
desktop computing applications.

Figure 4 shows the isolated network testbed we used for
our experiments. The testbed consists of eight IBM Netfin-
ity 4500R machines and a Micron desktop PC. The Netfin-
ity machines each had a 933Mhz Intel Pentium-III CPU
and 512MB RAM, and all of them were connected via giga-
bit Ethernet. The Micron desktop PC had a 450Mhz Intel
Pentium-II CPU and 128MB RAM, and was used as the Mo-
biDesk client. Four of the machines served as a MobiDesk
server infrastructure consisting of one NFS file server, one
proxy server running a delegate 8.9.2 [11] general-purpose
application level proxy, and two computing session servers.
One machine was connected on the client-side of the Mo-
biDesk proxy and was used as a NISTNet 2.0.12 WAN emu-
lator which could adjust the network characteristics seen by
the client. Four machines were connected to the client-side
of the WAN emulator, one Micron PC used as a MobiDesk
client, a second used as an external web server, a third
used as a packet monitor running Ethereal Network Ana-
lyzer 0.9.13 for measurement purposes, and the last used as
a client for network virtualization overhead measurements.
All of the machines ran Debian Linux, with the two comput-
ing session servers running Debian Stable with a Linux 2.4.5
kernel and Debian Unstable with a Linux 2.4.18 kernel, re-
spectively. The MobiDesk client machine was installed with
a dual boot configuration and also ran Microsoft Windows
XP Professional.

6.1 MobiDesk Virtualization Overhead
To measure the cost of MobiDesk’s operating system vir-

tualization, we used a range of micro benchmarks and real
application workloads and measured their performance on
our prototype and a vanilla Linux system. Table 2 shows
the seven microbenchmarks and the four application bench-
marks we used to quantify MobiDesk’s operating system
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Name Description Linux
getpid average getpid runtime 350 ns
ioctl average runtime for the FIONREAD

ioctl
427ns

shmget-
shmctl

IPC Shared memory segment holding
an integer is created and removed

3361 ns

semget-
semctl

IPC Semaphore variable is created
and removed

1370 ns

fork-
exit

process forks and waits for child which
calls exit immediately

44.7 us

fork-sh process forks and waits for child to run
/bin/sh to run a program that prints
“hello world” then exits

3.89 ms

Apache Runs Apache under load and mea-
sures average request time

1.2 ms

Make Linux Kernel compile with up to 10
process active at one time

224.5s

MySQL Time per interaction for “TPC-W
like” benchmark

8.33s

Table 2: Application Benchmarks

virtualization overhead, as well as the results for a vanilla
Linux system. To obtain accurate measurements, we re-
booted the system between measurements. Additionally, the
system call microbenchmarks directly used the TSC register
available Pentium CPUs to record timestamps at the signif-
icant measurement events. The average timestamp event
cost was 32 ns. The files for the benchmarks were stored
on the NFS server. All of these benchmarks were performed
in a chrooted environment on the NFS client machine run-
ning Debian Unstable with a Linux 2.4.18 kernel. Figure
5 shows the results of running the benchmarks under both
configurations, with the vanilla Linux configuration normal-
ized to one. Since all benchmarks measure the time to run
the benchmark, a small number is better for all results.

The results in Figure 5 show that the operating system
virtualization overhead is small. MobiDesk incurs less than
10% overhead for most of the microbenchmarks and less
than 4% overhead for the application workloads. The over-
head for the simple system call getpid benchmark is only 7%
compared to vanilla Linux, reflecting the fact that virtual-
ization for these kinds of system calls only requires an extra
procedure call and a hash table lookup. The most expen-
sive benchmarks for MobiDesk is semget+semctl which took
51% longer than vanilla Linux. The cost reflects the fact
that our unoptimized MobiDesk prototype needs to allocate
memory and do a number of namespace translations. The
ioctl benchmark also has high overhead, because of the 12
separate assignments it does to protect the call against ma-
licious root processes. This is large compared to the simple
FIONREAD ioctl that just performs a simple dereference.
However, since the ioctl is simple, we see that it only adds
200 ns of overhead over any ioctl. For real applications,
the most overhead was only 4% for the Apache workload,
where we used the http load benchmark [18] to place a par-
allel fetch load on the server with 30 clients fetching at the
same time. Similarly, we tested MySQL as part of a web
commerce scenario outlined by TPC-W with a bookstore
servlet running on top of Tomcat with a MySQL back-end
[50]. The MobiDesk overhead for this scenario was less than
2% versus vanilla Linux.

To measure the cost of MobiDesk’s network virtualization,
we used netperf 2.2pl4 [28] to measure MobiDesk network
I/O overhead versus vanilla Linux in terms of throughput,
latency, CPU utilization, and connection setup. We ran
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Figure 5: Operating System Virtualization Over-
head

the netperf client on the Netfinity client and the netperf
server on the MobiDesk session server. We used the Netfin-
ity client for these experiments instead of the MobiDesk
client so that all machines used for the network virtualiza-
tion measurements were connected via gigabit Ethernet. To
ensure that we were accurately measuring the performance
overheads of our systems as opposed to raw network link
performance, we used gigabit Ethernet for our experiments
so that the network link capacity could not be saturated
easily. All connections from the netperf client to the netperf
server were made through the delegate proxy. We compared
the performance of three different system configurations:
Vanilla, MobiDesk1, and MobiDesk2. The Vanilla system is
a stock Linux system without MobiDesk loaded into the ker-
nel. The MobiDesk1 and MobiDesk2 are systems with Mo-
biDesk loaded. On MobiDesk1, no connections are migrated
and hence only connection virtualization is performed; on
MobiDesk2, all connections are migrated and hence both
connection virtualization and virtual-physical mapping are
performed.

Figures 6 to 8 show the results for running the netperf
throughput experiment, latency experiment, and connec-
tion setup experiment. CPU utilization measurements are
omitted due to space constraints, but show similar over-
head results. The throughput experiment simply measures
the throughput achieved when sending messages of varying
sizes as fast as possible from the client to the server. Figure
6 shows the throughput overhead for the three systems we
tested. We can see that MobiDesk1 performs very close to
Vanilla, with an overhead of about 1.4Mbits/second. Mo-
biDesk2 shows the throughput overhead due to the virtual-
physical mapping, which is around 10Mbits/second.

The latency experiment measures the inverse of the trans-
action rate, where a transaction is the exchange of a request
message of size 128 bytes and a reply message of varying
sizes between the client and the server over a single con-
nection. Figure 7 shows the latency overhead for the three
systems we tested. The results bear the same characteristic
as that for the throughput overhead. Performance differ-
ence between Vanilla and MobiDesk1 is about 9.4 microsec-
onds, while latency due to the virtual-physical mapping in
MobiDesk2 can be observed to be around 40 microseconds.
Note that there is a strange drop of latency above a reply
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Figure 6: Virtualization Throughput Overhead
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Figure 7: Virtualization Latency Overhead

message size of 128 bytes. We determined that this unusual
behavior is due to a problem with the Linux device driver
for the Intel Pro/1000 NIC that was used. While the be-
havior is unusual, it does not affect the key result shown,
which is the small relative performance difference between
using vanilla Linux and MobiDesk.

The TCP connection setup experiment is the same as the
latency experiment except that a new connection is used for
every request/response transaction. This experiment sim-
ulates the interaction between a client and server in which
many short-lived connections are opened and closed. Figure
8 shows the TCP connection setup overhead for Vanilla and
MobiDesk1. Note that since connection setup occurs before
migration, there is no virtual-physical mapping overhead as-
sociated with connection setup, therefore this measurement
is not applicable to MobiDesk2. From the figure we can see
that the overhead is fewer than 10 transactions per second.
Due to the same Linux driver problem in the latency test,
we also see a strange increase of connection rate above reply
message size of 128 bytes.

To measure the scalability of MobiDesk’s proxy infrastruc-
ture, we used httperf [17] to stress test the delegate proxy.
We ran httperf on the Netfinity client and delegate on the
Netfinity proxy, which distributes client requests evenly to
the two Netfinity servers. The client requests are for a 4KB
file which is locally available on both servers. We measured
scalability relative to both number of simultaneous connec-
tion, and rate of new connections. Due to space constraints,
we only present scalability relative to rate of new connec-
tions since it is the more stressful test. Figure 9 shows the
connection setup latency versus rate of new connections. It
shows that while MobiDesk1 has a moderate overhead of
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Figure 8: TCP Connection Setup Overhead
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Figure 9: Scalability: Latency vs Rate of Connec-
tions

less than 4%, the important thing to note is that the over-
head does not increase even after the proxy was overloaded
at around 128 connections per second.

6.2 MobiDesk Application Performance
To evaluate MobiDesk performance on real desktop ap-

plications, we conducted experiments to measure the dis-
play performance of MobiDesk for web and multimedia ap-
plications and the migration performance of MobiDesk in
moving a user’s desktop computing session from one server
to another. To measure display performance, we compared
MobiDesk against running applications on a local PC. We
also compared MobiDesk running with XFree86 4.3.0 against
other popular commercial thin-client systems, including Cit-
rix MetaFrame XP for Windows [9], VNC 3.3.7 for Linux
[38], and Sun’s SunRay 2.0 [48]. All of the thin-client sys-
tems, except SunRay, used the Micron PC as the client and
a Netfinity server as the server. Since SunRay requires Sun
hardware to run, we added a SunRay I hardware thin-client
and a Solaris 9 v210 server to our experimental testbed since
it does not run with the common hardware/software config-
uration used by the other systems.

We evaluated display performance using two popular desk-
top application scenarios, web browsing and video playback.
Web browsing performance was measured using a Mozilla
1.4 browser to run a benchmark based on the Web Text
Page Load test from the Ziff-Davis iBench benchmark suite
[19]. The benchmark consists of a sequence of 54 web pages
containing a mix of text and graphics. The browser win-
dow was set to 1024x768 for all platforms measured. Video
playback performance was measured using a video player to
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play a 34.75 s video clip of original size 352x240 pixels dis-
played at 1024x768 full screen resolution. In the Unix plat-
forms we used MPlayer 1.0pre3 as the video player, while
for the Windows platforms we used the standard Windows
Media Player. We used the packet monitor in our testbed
to measure benchmark performance on the thin-client sys-
tems using slowmotion benchmarking [29], which allows us
to quantify system performance in a non-invasive manner
by capturing network traffic. The primary measure of web
browsing performance was the average page download la-
tency. The primary measure of video playback performance
was video quality [29], which accounts for both playback de-
lays and frame drops that degrade playback quality. For ex-
ample, 100 percent video quality means that all video frames
were displayed at real-time speed. On the other hand, 50
percent video quality could mean that half the video frames
were dropped when displayed at real-time speed or that the
clip took twice as long to play even though all of the video
frames were displayed.

For both benchmarks, we measured all systems in three
representative network scenarios: LAN, with an available
network bandwidth of 100 Mbps and no introduced network
latency (100Mb-0ms), and two WAN scenarios, one with
100 Mbps available network bandwidth and 66 ms round-
trip network latency (100Mb-66ms), representative of cross-
country and transatlantic latencies [15], and another with
100 Mbps available network bandwidth and 120 ms round-
trip network latency (100Mb-120ms), representative of typ-
ical transpacific latencies [15]. For the WAN tests we in-
creased the default TCP window size for both server and
client. SunRay was unaffected by this since it uses UDP.

Figures 10 and 11 show the web browsing performance
results in terms of the perceived latency and average per
page data transfer, respectively. Figures 12 and 13 show the
video playback performance results in terms of the video
quality and total data transferred, respectively. Figure 10
shows that MobiDesk has the smallest web page download
latencies, thus providing the best overall performance. Fig-
ures 10 and 11 together show that MobiDesk outperforms
the local PC even though the PC transfers less data. While
the PC runs the web browser on the slower PC client, Mo-
biDesk runs the browser on the faster server enabling it to
process web pages faster. The worst web browsing platform
is Citrix MetaFrame, which adopts a more high-level display
approach that results in poor WAN performance because of
the tight coupling required between the application running
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on the server and the Citrix viewer running on the client.
VNC has the second worst WAN web browsing performance
in part because it relies on a client pull model for sending dis-
play updates as opposed to MobiDesk’s server-push model,
which avoids roundtrip latencies providing better interac-
tive response time. In addition, as a response to the limited
WAN network conditions VNC adaptively uses more effi-
cient compression algorithms, thus reducing its data trans-
fer, but increasing its latency, and worsening its overall web
browsing performance.

Our web browsing experiments under WAN conditions
show that increased network latency can result in increased
web page latencies when using TCP-based thin-client sys-
tems. This is due to the fact that TCP implementations
reduce the congestion window by half for every roundtrip
time that a connection has been idle [16]. As our bench-
mark mimics traditional web browsing usage by adding de-
lays between the display of each web page, the thin-client
connection ends up going idle and goes through slow-start
each time a new page starts downloading. As network la-
tency increases, the TCP connection takes longer to recover
from its idle state, thus increasing the time it takes for web
pages to load. Like other TCP-based thin-client systems,
MobiDesk has higher web page latencies for the web bench-
mark in the presence of transpacific network latencies. How-
ever, Figure 10 shows that MobiDesk continues to provide
superior sub-second performance over existing systems, even
for high latency network connections.

Figure 12 shows that MobiDesk provides perfect video
quality in the same manner as the traditional desktop PC,
and that all of the other platforms deliver very poor video
quality. They suffer from an inability to distinguish video
data from normal display updates and apply ineffective com-
pression algorithms on the video data, which are unable to
keep up with the stream of updates being generated. In con-
trast, the results show that MobiDesk’s ability to leverage
local client video hardware in delivering video using alterna-
tive YUV formats provides substantial performance benefits
over other thin-client systems. VNC provides the worst over-
all performance primarily because of its use of a client pull
model instead of MobiDesk’s server push model. In order
to display each video frame, the VNC client needs to send
an update request to the server. Clearly, video frames are
generated faster than the rate at which the client can send
requests to the server. Finally, Figure 13 shows that Mo-
biDesk’s 100% video quality does not imply high resource
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utilization. The total data transferred translates into a
bandwidth utilization of roughly 24Mbps. While VNC and
Citrix consume less bandwidth, their video quality is too
low to provide useful video delivery. The PC is the most
bandwidth efficient platform overall, since it transfers the
compressed video stream for local decoding on the client.

To measure real application performance in terms of the
cost of migration, we migrated a complete KDE desktop
computing environment from one MobiDesk server to an-
other. The applications running in the KDE computing ses-
sion when it was migrated are described in Table 3. The
KDE session had over 30 different processes running, provid-
ing the desktop applications as well as substantial window
system infrastructure, in particular, a framework for inter-
application sharing. The session also included a rich desktop
interface managed by a window manager, and a number of
applications running in a panel, such as a clock. To demon-
strate the ability to migrate a complete computing session
across Linux kernels with different minor versions, we check-
pointed the KDE session on the 2.4.5 kernel client machine
and restarted it on the 2.4.18 kernel machine. For this ex-
periment, the workloads were checkpointed to and restarted
from local disk. The resulting checkpoint and restart times
were less than a second, .85 s and .94 s, respectively. The
checkpointed image was only 35 MB for a full desktop com-
puting session, which can be easily compressed using bzip2
down to 8.8 MB. Our results show that MobiDesk can be
used to provide fast migration of computing sessions among
MobiDesk servers with modest checkpoint state.

Application Description
MobiDesk Remote display server
KDE Entire KDE 2.2.2 environment, including win-

dow manager, panel and utilities
SSH openssh 3.4p1 client inside a KDE konsole ter-

minal connected to a remote host
Shell The Bash 2.05a shell running in a konsole ter-

minal
KGhostView A PDF viewer with a 450k 16 page PDF file

loaded
Konqueror A modern standards compliant web browser

that is part of KDE
KOffice The KDE word processor and spreadsheet pro-

grams

Table 3: Migrated KDE Desktop Computing Session

7. RELATED WORK
MobiDesk provides a utility computing infrastructure for

desktop computing. Other utility computing approaches
have been proposed, primarily in the context of web services
and grid computing [13, 14]. For example, IBM’s Oceano
project [2] proposed the use of a pool of web servers that
could be reallocated to different customers based on their
usage. Web services utilities focus on web applications and
grid computing utilities focus on scientific applications and
other applications written specifically for grids. These ap-
proaches do not support hosting general desktop computing
environments, which is the focus of MobiDesk. Plan9 [32]
also provides an infrastructure-based approach to desktop
computing, but does not provide the same kind of mobility
support with unmodified applications and operating system
kernels. More generally, IBM’s on demand computing and
Hewlett-Packard’s utility computing initiative also demon-
strate industry interest and trends toward a utility comput-
ing model.

MobiDesk display virtualization builds upon the thin-client
computing work of two of the authors [5]. While other thin-
client approaches [9, 10, 38, 41, 43] have also been developed,
they were not designed for WAN environments with higher
network latencies. Approaches such as Citrix MetaFrame
operate using higher-level display primitives that are de-
signed more for low bandwidth environments, but can result
in worse WAN performance [23]. MobiDesk’s virtual device
driver approach is most similar to SunRay [42, 43], but Mo-
biDesk provides a more effective mapping of display com-
mands to protocol primitives to significantly improve per-
formance. MobiDesk also employs additional mechanisms
for latency variability, that make its design more suitable
for WAN environments. The InfoPad project [27] developed
a system to provide access to multimedia content over wire-
less networks to portable devices. In contrast to MobiDesk’s
application transparent approach, InfoPad’s video delivery
requires the use of specific formats and playback applica-
tions to function properly.

MobiDesk operating system virtualization builds on pre-
vious work by three of the authors on Zap [30, 34], a sys-
tem for transparent migration of unmodified applications
inspired in part by [42]. Many other systems have been pro-
posed to support process migration [3, 4, 7, 8, 12, 25, 26, 33,
35, 37, 39], but these systems do not provide general migra-
tion of unmodified legacy applications, across independent
commodity operating systems . TUI [45] is one of the few
systems that provides support for process migration across
machines running different operating systems and hardware
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architectures. Unlike MobiDesk, TUI has to compile appli-
cations on each platform using a special compiler and does
not work with unmodified applications. Virtual machine
monitors (VMMs) provide an alternative virtualization ap-
proach that can be used to migrate an entire operating sys-
tem environment [21, 40, 51]. Unlike MobiDesk, VMMs
decouple processes from the underlying machine hardware,
but tie them to an instance of an operating system. As a
result, VMMs cannot migrate processes apart from the op-
erating system and cannot continue running those processes
if the operating system ever goes down, such as during se-
curity upgrades. In contrast, MobiDesk decouples process
execution from the underlying operating system allowing it
to migrate processes to another computer when an operating
system instance is upgraded.

MobiDesk network virtualization provides mobile commu-
nication support. Many other approaches have been devel-
oped for network mobility [6, 20, 22, 31, 36, 46, 47, 49, 54,
55, 56]. However, with the exception of [55], none of them
is designed with process migration integration in mind. In
addition, these approaches often require network infrastruc-
ture support to address general mobility issues (e.g., locating
a mobile host) that do not apply to the application environ-
ment of MobiDesk. Transport layer solutions such as [46,
47] can provide fine grain connection migration without ad-
ditional network infrastructure support. However, they re-
quire modifying the transport protocol itself, making them
more difficult to deploy and limiting their use. Applica-
tion layer solutions such as [36, 55, 56] can also provide
fine grain connection migration without additional network
infrastructure support; neither do they require modifying
the transport protocol. However, the migration is emulated
by closing the old TCP connection and opening a new one.
The emulation requires double buffering at the application
layer to account for in-flight data that have been received
by TCP but not yet delivered to the application, since these
data are lost when the old connection is closed. This results
in substantial network I/O overhead [55] even when the con-
nections are not migrated. In contrast, MobiDesk employs
a novel, low-overhead virtualization mechanism to provide
network mobility without requiring network infrastructure
support or transport protocol changes.

8. CONCLUSIONS
We have introduced MobiDesk, an architecture for cen-

tralized hosting of desktop computing sessions. MobiDesk
hosts computing sessions within virtualized private environ-
ments by abstracting three key resources: display, operat-
ing system and network. Display virtualization allows Mo-
biDesk to provide fast remote access to sessions across LAN
and WAN environments. Operating system virtualization
allows MobiDesk to migrate sessions among hosting servers
to provide high-availability computing in the presence of
server maintenance and upgrades. Network virtualization
allows MobiDesk to transparently maintain persistent con-
nections to unmodified outside hosts, even as a session mi-
grates from one server to another.

We have implemented and evaluated the performance of a
MobiDesk prototype in Linux. Our implementation demon-
strates that MobiDesk can support unmodified applications
in hosted computing sessions without any changes to operat-
ing system kernels, network infrastructure, or network pro-
tocols. Our experimental results with real applications and

hosted desktop computing sessions show that MobiDesk has
low virtualization overhead, can migrate computing sessions
with subsecond checkpoint/restart times, and provides supe-
rior display performance over other remote display systems.
MobiDesk is unique in its ability to offer a complete desk-
top experience remotely with full-motion video support. It
can even provide better performance than running a desktop
session on a local PC for more resource-constrained clients.
Given its performance and centralized hosting model, Mo-
biDesk provides the foundation for a utility computing in-
frastructure that can dramatically reduce the management
complexity and costs of desktop computing.
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