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Abstract—ARM servers are becoming increasingly common,
making server technologies such as virtualization for ARM of
growing importance. We present the first study of ARM vir-
tualization performance on server hardware, including multi-
core measurements of two popular ARM and x86 hypervisors,
KVM and Xen. We show how ARM hardware support for
virtualization can enable much faster transitions between VMs
and the hypervisor, a key hypervisor operation. However,
current hypervisor designs, including both Type 1 hypervisors
such as Xen and Type 2 hypervisors such as KVM, are not
able to leverage this performance benefit for real application
workloads. We discuss the reasons why and show that other
factors related to hypervisor software design and implementa-
tion have a larger role in overall performance. Based on our
measurements, we discuss changes to ARM’s hardware virtu-
alization support that can potentially bridge the gap to bring
its faster VM-to-hypervisor transition mechanism to modern
Type 2 hypervisors running real applications. These changes
have been incorporated into the latest ARM architecture.
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tems; virtualization; multi-core; performance; ARM; x86

I. INTRODUCTION

ARM CPUs have become the platform of choice across

mobile and embedded systems, leveraging their benefits in

customizability and power efficiency in these markets. The

release of the 64-bit ARM architecture, ARMv8 [1], with its

improved computing capabilities is spurring an upward push

of ARM CPUs into traditional server systems. A growing

number of companies are deploying commercially available

ARM servers to meet their computing infrastructure needs.

As virtualization plays an important role for servers, ARMv8

provides hardware virtualization support. Major virtualiza-

tion players, including KVM [2] and Xen [3], leverage ARM

hardware virtualization extensions to support unmodified

existing operating systems (OSes) and applications with

improved hypervisor performance.
Despite these trends and the importance of ARM vir-

tualization, little is known in practice regarding how well

virtualized systems perform using ARM. There are no de-

tailed studies of ARM virtualization performance on server

hardware. Although KVM and Xen both have ARM and

x86 virtualization solutions, there are substantial differ-

ences between their ARM and x86 approaches because of

key architectural differences between the underlying ARM

and x86 hardware virtualization mechanisms. It is unclear

whether these differences have a material impact, positive

or negative, on performance. The lack of clear performance

data limits the ability of hardware and software architects

to build efficient ARM virtualization solutions, and limits

the ability of companies to evaluate how best to deploy

ARM virtualization solutions to meet their infrastructure

needs. The increasing demand for ARM-based solutions and

growing investments in ARM server infrastructure makes

this problem one of key importance.

We present the first in-depth study of ARM virtualization

performance on multi-core server hardware. We measure the

performance of the two most popular ARM hypervisors,

KVM and Xen, and compare them with their respective x86

counterparts. These hypervisors are important and useful to

compare on ARM given their popularity and their different

design choices. Xen is a standalone bare-metal hypervisor,

commonly referred to as a Type 1 hypervisor. KVM is a

hosted hypervisor integrated within an existing OS kernel,

commonly referred to as a Type 2 hypervisor.

We have designed and run a number of microbenchmarks

to analyze the performance of frequent low-level hypervisor

operations, and we use these results to highlight differences

in performance between Type 1 and Type 2 hypervisors on

ARM. A key characteristic of hypervisor performance is

the cost of transitioning from a virtual machine (VM) to

the hypervisor, for example to process interrupts, allocate

memory to the VM, or perform I/O. We show that Type 1

hypervisors, such as Xen, can transition between the VM

and the hypervisor much faster than Type 2 hypervisors,

such as KVM, on ARM. We show that ARM can enable

significantly faster transitions between the VM and a Type

1 hypervisor compared to x86. On the other hand, Type 2

hypervisors such as KVM, incur much higher overhead on

ARM for VM-to-hypervisor transitions compared to x86.

We also show that for some more complicated hypervisor

operations, such as switching between VMs, Type 1 and

Type 2 hypervisors perform equally fast on ARM.

Despite the performance benefit in VM transitions that

ARM can provide, we show that current hypervisor designs,

including both KVM and Xen on ARM, result in real

application performance that cannot be easily correlated

with the low-level virtualization operation performance. In

fact, for many workloads, we show that KVM ARM, a
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Figure 1: Hypervisor Design

Type 2 hypervisor, can meet or exceed the performance

of Xen ARM, a Type 1 hypervisor, despite the faster

transitions between the VM and hypervisor using Type 1

hypervisor designs on ARM. We show how other factors

related to hypervisor software design and implementation

play a larger role in overall performance. These factors

include the hypervisor’s virtual I/O model, the ability to

perform zero copy I/O efficiently, and interrupt processing

overhead. Although ARM hardware virtualization support

incurs higher overhead on VM-to-hypervisor transitions for

Type 2 hypervisors than x86, we show that both types of

ARM hypervisors can achieve similar, and in some cases

lower, performance overhead than their x86 counterparts on

real application workloads.

To enable modern hypervisor designs to leverage the

potentially faster VM transition costs when using ARM

hardware, we discuss changes to the ARMv8 architecture

that can benefit Type 2 hypervisors. These improvements

potentially enable Type 2 hypervisor designs such as KVM

to achieve faster VM-to-hypervisor transitions, including

for hypervisor events involving I/O, resulting in reduced

virtualization overhead on real application workloads. ARM

has incorporated these changes into the latest ARMv8.1

architecture.

II. BACKGROUND

Hypervisor Overview. Figure 1 depicts the two main

hypervisor designs, Type 1 and Type 2. Type 1 hypervisors,

like Xen, comprise a separate hypervisor software compo-

nent, which runs directly on the hardware and provides a

virtual machine abstraction to VMs running on top of the

hypervisor. Type 2 hypervisors, like KVM, run an existing

OS on the hardware and run both VMs and applications

on top of the OS. Type 2 hypervisors typically modify

the existing OS to facilitate running of VMs, either by

integrating the Virtual Machine Monitor (VMM) into the

existing OS source code base, or by installing the VMM as

a driver into the OS. KVM integrates directly with Linux [4]

where other solutions such as VMware Workstation [5] use a

loadable driver in the existing OS kernel to monitor virtual

machines. The OS integrated with a Type 2 hypervisor is

commonly referred to as the host OS, as opposed to the

guest OS which runs in a VM.

One advantage of Type 2 hypervisors over Type 1 hyper-

visors is the reuse of existing OS code, specifically device

drivers for a wide range of available hardware. This is

especially true for server systems with PCI where any com-

mercially available PCI adapter can be used. Traditionally,

a Type 1 hypervisor suffers from having to re-implement

device drivers for all supported hardware. However, Xen [6],

a Type 1 hypervisor, avoids this by only implementing a min-

imal amount of hardware support directly in the hypervisor

and running a special privileged VM, Dom0, which runs an

existing OS such as Linux and uses all the existing device

drivers for that OS. Xen then uses Dom0 to perform I/O

using existing device drivers on behalf of normal VMs, also

known as DomUs.

Transitions from a VM to the hypervisor occur whenever

the hypervisor exercises system control, such as processing

interrupts or I/O. The hypervisor transitions back to the

VM once it has completed its work managing the hardware,

letting workloads in VMs continue executing. The cost of

such transitions is pure overhead and can add significant

latency in communication between the hypervisor and the

VM. A primary goal in designing both hypervisor software

and hardware support for virtualization is to reduce the

frequency and cost of transitions as much as possible.

VMs can run guest OSes with standard device drivers

for I/O, but because they do not have direct access to

hardware, the hypervisor would need to emulate real I/O

devices in software. This results in frequent transitions

between the VM and the hypervisor, making each interaction

with the emulated device an order of magnitude slower

than communicating with real hardware. Alternatively, direct

passthrough of I/O from a VM to the real I/O devices can

be done using device assignment, but this requires more

expensive hardware support and complicates VM migration.

Instead, the most common approach is paravirtual I/O in

which custom device drivers are used in VMs for virtual

devices supported by the hypervisor. The interface between

the VM device driver and the virtual device is specifically

designed to optimize interactions between the VM and the

hypervisor and facilitate fast I/O. KVM uses an implemen-

tation of the Virtio [7] protocol for disk and networking

support, and Xen uses its own implementation referred to

simply as Xen PV. In KVM, the virtual device backend is

implemented in the host OS, and in Xen the virtual device

backend is implemented in the Dom0 kernel. A key potential

performance advantage for KVM is that the virtual device

implementation in the KVM host kernel has full access to all

of the machine’s hardware resources, including VM memory.

On the other hand, Xen provides stronger isolation between

the virtual device implementation and the VM as the Xen

virtual device implementation lives in a separate VM, Dom0,

which only has access to memory and hardware resources

specifically allocated to it by the Xen hypervisor.

ARM Virtualization Extensions. To enable hypervisors

to efficiently run VMs with unmodified guest OSes, ARM

introduced hardware virtualization extensions [1] to over-
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come the limitation that the ARM architecture was not

classically virtualizable [8]. All server and networking class

ARM hardware is expected to implement these extensions.

We provide a brief overview of the ARM hardware vir-

tualization extensions and how hypervisors leverage these

extensions, focusing on ARM CPU virtualization support

and contrasting it to how x86 works.

The ARM virtualization extensions are centered around

a new CPU privilege level (also known as exception level),
EL2, added to the existing user and kernel levels, EL0 and

EL1, respectively. Software running in EL2 can configure

the hardware to support VMs. To allow VMs to interact

with an interface identical to the physical machine while

isolating them from the rest of the system and preventing

them from gaining full access to the hardware, a hypervisor

enables the virtualization features in EL2 before switching to

a VM. The VM will then execute normally in EL0 and EL1

until some condition is reached that requires intervention of

the hypervisor. At this point, the hardware traps into EL2

giving control to the hypervisor, which can then interact

directly with the hardware and eventually return to the VM

again. When all virtualization features are disabled in EL2,

software running in EL1 and EL0 works just like on a system

without the virtualization extensions where software running

in EL1 has full access to the hardware.

ARM hardware virtualization support enables traps to EL2

on certain operations, enables virtualized physical memory

support, and provides virtual interrupt and timer support.

ARM provides CPU virtualization by allowing software in

EL2 to configure the CPU to trap to EL2 on sensitive

instructions that cannot be safely executed by a VM. ARM

provides memory virtualization by allowing software in

EL2 to point to a set of page tables, Stage-2 page tables,

used to translate the VM’s view of physical addresses to

machine addresses. When Stage-2 translation is enabled,

the ARM architecture defines three address spaces: Virtual

Addresses (VA), Intermediate Physical Addresses (IPA), and

Physical Addresses (PA). Stage-2 translation, configured in

EL2, translates from IPAs to PAs. ARM provides interrupt

virtualization through a set of virtualization extensions to

the ARM Generic Interrupt Controller (GIC) architecture,

which allows a hypervisor to program the GIC to inject

virtual interrupts to VMs, which VMs can acknowledge

and complete without trapping to the hypervisor. However,

enabling and disabling virtual interrupts must be done in

EL2. Furthermore, all physical interrupts are taken to EL2

when running in a VM, and therefore must be handled

by the hypervisor. Finally, ARM provides a virtual timer,

which can be configured by the VM without trapping to the

hypervisor. However, when the virtual timer fires, it raises a

physical interrupt, which must be handled by the hypervisor

and translated into a virtual interrupt.
ARM hardware virtualization support has some similari-

ties to x861, including providing a means to trap on sensitive

instructions and a nested set of page tables to virtualize

physical memory. However, there are key differences in how

they support Type 1 and Type 2 hypervisors. While ARM

virtualization extensions are centered around a separate CPU

mode, x86 support provides a mode switch, root vs. non-root

mode, completely orthogonal from the CPU privilege rings.

While ARM’s EL2 is a strictly different CPU mode with its

own set of features, x86 root mode supports the same full

range of user and kernel mode functionality as its non-root

mode. Both ARM and x86 trap into their respective EL2

and root modes, but transitions between root and non-root

mode on x86 are implemented with a VM Control Structure

(VMCS) residing in normal memory, to and from which

hardware state is automatically saved and restored when

switching to and from root mode, for example when the

hardware traps from a VM to the hypervisor. ARM, being

a RISC-style architecture, instead has a simpler hardware

mechanism to transition between EL1 and EL2 but leaves it

up to software to decide which state needs to be saved and

restored. This provides more flexibility in the amount of

work that needs to be done when transitioning between EL1

and EL2 compared to switching between root and non-root

mode on x86, but poses different requirements on hypervisor

software implementation.
ARM Hypervisor Implementations. As shown in Fig-

ures 2 and 3, Xen and KVM take different approaches to

using ARM hardware virtualization support. Xen as a Type 1

hypervisor design maps easily to the ARM architecture, run-

1Since Intel’s and AMD’s hardware virtualization support are very
similar, we limit our comparison to ARM and Intel.
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ning the entire hypervisor in EL2 and running VM userspace

and VM kernel in EL0 and EL1, respectively. However,

existing OSes are designed to run in EL1, so a Type 2

hypervisor that leverages an existing OS such as Linux to

interface with hardware does not map as easily to the ARM

architecture. EL2 is strictly more privileged and a separate

CPU mode with different registers than EL1, so running

Linux in EL2 would require substantial changes to Linux

that would not be acceptable in practice. KVM instead runs

across both EL2 and EL1 using split-mode virtualization [2],

sharing EL1 between the host OS and VMs and running

a minimal set of hypervisor functionality in EL2 to be

able to leverage the ARM virtualization extensions. KVM

enables virtualization features in EL2 when switching from

the host to a VM, and disables them when switching back,

allowing the host full access to the hardware from EL1 and

properly isolating VMs also running in EL1. As a result,

transitioning between the VM and the hypervisor involves

transitioning to EL2 to run the part of KVM running in EL2,

then transitioning to EL1 to run the rest of KVM and the

host kernel. However, because both the host and the VM run

in EL1, the hypervisor must context switch all register state

when switching between host and VM execution context,

similar to a regular process context switch.

This difference on ARM between Xen and KVM does not

exist on x86 because the root mode used by the hypervisor

does not limit or change how CPU privilege levels are used.

Running Linux in root mode does not require any changes to

Linux, so KVM maps just as easily to the x86 architecture

as Xen by running the hypervisor in root mode.

KVM only runs the minimal set of hypervisor function-

ality in EL2 to be able to switch between VMs and the host

and emulates all virtual device in the host OS running in

EL1 and EL0. When a KVM VM performs I/O it involves

trapping to EL2, switching to host EL1, and handling the

I/O request in the host. Because Xen only emulates the GIC

in EL2 and offloads all other I/O handling to Dom0, when a

Xen VM performs I/O, it involves trapping to the hypervisor,

signaling Dom0, scheduling Dom0, and handling the I/O

request in Dom0.

III. EXPERIMENTAL DESIGN

To evaluate the performance of ARM virtualization, we

ran both microbenchmarks and real application workloads

on the most popular hypervisors on ARM server hardware.

As a baseline for comparison, we also conducted the same

experiments with corresponding x86 hypervisors and server

hardware. We leveraged the CloudLab [9] infrastructure for

both ARM and x86 hardware.

ARM measurements were done using HP Moonshot m400

servers, each with a 64-bit ARMv8-A 2.4 GHz Applied

Micro Atlas SoC with 8 physical CPU cores. Each m400

node had 64 GB of RAM, a 120 GB SATA3 SSD for

storage, and a Dual-port Mellanox ConnectX-3 10 GbE NIC.

x86 measurements were done using Dell PowerEdge r320

servers, each with a 64-bit Xeon 2.1 GHz ES-2450 with

8 physical CPU cores. Hyperthreading was disabled on the

r320 nodes to provide a similar hardware configuration to

the ARM servers. Each r320 node had 16 GB of RAM, a

4x500 GB 7200 RPM SATA RAID5 HD for storage, and

a Dual-port Mellanox MX354A 10 GbE NIC. All servers

are connected via 10 GbE, and the interconnecting network

switch [10] easily handles multiple sets of nodes commu-

nicating with full 10 Gb bandwidth such that experiments

involving networking between two nodes can be considered

isolated and unaffected by other traffic in the system. Using

10 Gb Ethernet was important, as many benchmarks were

unaffected by virtualization when run over 1 Gb Ethernet,

because the network itself became the bottleneck.

To provide comparable measurements, we kept the soft-

ware environments across all hardware platforms and all

hypervisors the same as much as possible. We used the most

recent stable versions available at the time of our experi-

ments of the most popular hypervisors on ARM and their

counterparts on x86: KVM in Linux 4.0-rc4 with QEMU

2.2.0, and Xen 4.5.0. KVM was configured with its standard

VHOST networking feature, allowing data handling to occur

in the kernel instead of userspace, and with cache=none
for its block storage devices. Xen was configured with its

in-kernel block and network backend drivers to provide

best performance and reflect the most commonly used I/O

configuration for Xen deployments. Xen x86 was configured

to use HVM domains, except for Dom0 which was only

supported as a PV instance. All hosts and VMs used Ubuntu

14.04 with the same Linux 4.0-rc4 kernel and software

configuration for all machines. A few patches were applied

to support the various hardware configurations, such as

adding support for the APM X-Gene PCI bus for the HP

m400 servers. All VMs used paravirtualized I/O, typical

of cloud infrastructure deployments such as Amazon EC2,

instead of device passthrough, due to the absence of an

IOMMU in our test environment.

We ran benchmarks both natively on the hosts and in

VMs. Each physical or virtual machine instance used for

running benchmarks was configured as a 4-way SMP with

12 GB of RAM to provide a common basis for comparison.

This involved three configurations: (1) running natively on

Linux capped at 4 cores and 12 GB RAM, (2) running in a

VM using KVM with 8 cores and 16 GB RAM with the VM

capped at 4 virtual CPUs (VCPUs) and 12 GB RAM, and

(3) running in a VM using Xen with Dom0, the privileged

domain used by Xen with direct hardware access, capped at

4 VCPUs and 4 GB RAM and the VM capped at 4 VCPUs

and 12 GB RAM. Because KVM configures the total hard-

ware available while Xen configures the hardware dedicated

to Dom0, the configuration parameters are different but the

effect is the same, which is to leave the hypervisor with

4 cores and 4 GB RAM to use outside of what is used
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by the VM. We use and measure multi-core configurations

to reflect real-world server deployments. The memory limit

was used to ensure a fair comparison across all hardware

configurations given the RAM available on the x86 servers

and the need to also provide RAM for use by the hypervisor

when running VMs. For benchmarks that involve clients

interfacing with the server, the clients were run natively on

Linux and configured to use the full hardware available.

To improve precision of our measurements and for our

experimental setup to mimic recommended configuration

best practices [11], we pinned each VCPU to a specific

physical CPU (PCPU) and generally ensured that no other

work was scheduled on that PCPU. In KVM, all of the

host’s device interrupts and processes were assigned to run

on a specific set of PCPUs and each VCPU was pinned to a

dedicated PCPU from a separate set of PCPUs. In Xen, we

configured Dom0 to run on a set of PCPUs and DomU to

run a separate set of PCPUs. We further pinned each VCPU

of both Dom0 and DomU to its own PCPU.

IV. MICROBENCHMARK RESULTS

We designed and ran a number of microbenchmarks

to quantify important low-level interactions between the

hypervisor and the ARM hardware support for virtualization.

A primary performance cost in running in a VM is how

much time must be spent outside the VM, which is time

not spent running the workload in the VM and therefore

is virtualization overhead compared to native execution.

Therefore, our microbenchmarks are designed to measure

time spent handling a trap from the VM to the hypervisor,

including time spent on transitioning between the VM and

the hypervisor, time spent processing interrupts, time spent

switching between VMs, and latency added to I/O.

We designed a custom Linux kernel driver, which ran

in the VM under KVM and Xen, on ARM and x86, and

executed the microbenchmarks in the same way across all

platforms. Measurements were obtained using cycle counters

and ARM hardware timer counters to ensure consistency

across multiple CPUs. Instruction barriers were used before

and after taking timestamps to avoid out-of-order execution

or pipelining from skewing our measurements.

Because these measurements were at the level of a few

hundred to a few thousand cycles, it was important to

minimize measurement variability, especially in the context

of measuring performance on multi-core systems. Variations

caused by interrupts and scheduling can skew measurements

by thousands of cycles. To address this, we pinned and

isolated VCPUs as described in Section III, and also ran

these measurements from within VMs pinned to specific

VCPUs, assigning all virtual interrupts to other VCPUs.

Using this framework, we ran seven microbenchmarks

that measure various low-level aspects of hypervisor per-

formance, as listed in Table I. Table II presents the results

from running these microbenchmarks on both ARM and

Name Description
Hypercall Transition from VM to hypervisor and return

to VM without doing any work in the hypervi-
sor. Measures bidirectional base transition cost
of hypervisor operations.

Interrupt Controller
Trap

Trap from VM to emulated interrupt controller
then return to VM. Measures a frequent op-
eration for many device drivers and baseline
for accessing I/O devices emulated in the
hypervisor.

Virtual IPI Issue a virtual IPI from a VCPU to another
VCPU running on a different PCPU, both
PCPUs executing VM code. Measures time
between sending the virtual IPI until the re-
ceiving VCPU handles it, a frequent operation
in multi-core OSes.

Virtual IRQ Com-
pletion

VM acknowledging and completing a virtual
interrupt. Measures a frequent operation that
happens for every injected virtual interrupt.

VM Switch Switch from one VM to another on the same
physical core. Measures a central cost when
oversubscribing physical CPUs.

I/O Latency Out Measures latency between a driver in the VM
signaling the virtual I/O device in the hyper-
visor and the virtual I/O device receiving the
signal. For KVM, this traps to the host kernel.
For Xen, this traps to Xen then raises a virtual
interrupt to Dom0.

I/O Latency In Measures latency between the virtual I/O de-
vice in the hypervisor signaling the VM and
the VM receiving the corresponding virtual
interrupt. For KVM, this signals the VCPU
thread and injects a virtual interrupt for the
Virtio device. For Xen, this traps to Xen then
raises a virtual interrupt to DomU.

Table I: Microbenchmarks

x86 server hardware. Measurements are shown in cycles

instead of time to provide a useful comparison across server

hardware with different CPU frequencies, but we focus our

analysis on the ARM measurements.

The Hypercall microbenchmark shows that transitioning

from a VM to the hypervisor on ARM can be significantly

faster than x86, as shown by the Xen ARM measurement,

which takes less than a third of the cycles that Xen or

KVM on x86 take. As explained in Section II, the ARM

architecture provides a separate CPU mode with its own

register bank to run an isolated Type 1 hypervisor like Xen.

Transitioning from a VM to a Type 1 hypervisor requires lit-

tle more than context switching the general purpose registers

as running the two separate execution contexts, VM and the

hypervisor, is supported by the separate ARM hardware state

for EL2. While ARM implements additional register state to

support the different execution context of the hypervisor, x86

transitions from a VM to the hypervisor by switching from

non-root to root mode which requires context switching the

entire CPU register state to the VMCS in memory, which is

much more expensive even with hardware support.

However, the Hypercall microbenchmark also shows that

transitioning from a VM to the hypervisor is more than an

order of magnitude more expensive for Type 2 hypervisors

like KVM than for Type 1 hypervisors like Xen. This is
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ARM x86
Microbenchmark KVM Xen KVM Xen
Hypercall 6,500 376 1,300 1,228
Interrupt Controller Trap 7,370 1,356 2,384 1,734
Virtual IPI 11,557 5,978 5,230 5,562
Virtual IRQ Completion 71 71 1,556 1,464
VM Switch 10,387 8,799 4,812 10,534
I/O Latency Out 6,024 16,491 560 11,262
I/O Latency In 13,872 15,650 18,923 10,050

Table II: Microbenchmark Measurements (cycle counts)

because although all VM traps are handled in EL2, a Type

2 hypervisor is integrated with a host kernel and both run

in EL1. This results in four additional sources of overhead.

First, transitioning from the VM to the hypervisor involves

not only trapping to EL2, but also returning to the host

OS in EL1, as shown in Figure 3, incurring a double trap

cost. Second, because the host OS and the VM both run

in EL1 and ARM hardware does not provide any features

to distinguish between the host OS running in EL1 and the

VM running in EL1, software running in EL2 must context

switch all the EL1 system register state between the VM

guest OS and the Type 2 hypervisor host OS, incurring

added cost of saving and restoring EL1 register state. Third,

because the host OS runs in EL1 and needs full access to

the hardware, the hypervisor must disable traps to EL2 and

Stage-2 translation from EL2 while switching from the VM

to the hypervisor, and enable them when switching back

to the VM again. Fourth, because the Type 2 hypervisor

runs in EL1 but needs to access VM control register state

such as the VGIC state, which can only be accessed from

EL2, there is additional overhead to read and write the VM

control register state in EL2. There are two approaches.

One, the hypervisor can jump back and forth between EL1

and EL2 to access the control register state when needed.

Two, it can copy the full register state to memory while

it is still in EL2, return to the host OS in EL1 and read

and write the memory copy of the VM control state, and

then finally copy the state from memory back to the EL2

control registers when the hypervisor is running in EL2

again. Both methods incur much overhead, but the first

makes the software implementation complicated and difficult

to maintain. KVM ARM currently takes the second approach

of reading and writing all VM control registers in EL2

during each transition between the VM and the hypervisor.

While the cost of the trap between CPU modes itself is not

very high as shown in previous work [2], our measurements

show that there is a substantial cost associated with saving

and restoring register state to switch between EL2 and

the host in EL1. Table III provides a breakdown of the

cost of context switching the relevant register state when

performing the Hypercall microbenchmark measurement on

KVM ARM. Context switching consists of saving register

state to memory and restoring the new context’s state from

memory to registers. The cost of saving and restoring this

Register State Save Restore
GP Regs 152 184
FP Regs 282 310
EL1 System Regs 230 511
VGIC Regs 3,250 181
Timer Regs 104 106
EL2 Config Regs 92 107
EL2 Virtual Memory Regs 92 107

Table III: KVM ARM Hypercall Analysis (cycle counts)

state accounts for almost all of the Hypercall time, indicating

that context switching state is the primary cost due to KVM

ARM’s design, not the cost of extra traps. Unlike Xen ARM

which only incurs the relatively small cost of saving and

restoring the general-purpose (GP) registers, KVM ARM

saves and restores much more register state at much higher

cost. Note that for ARM, the overall cost of saving register

state, when transitioning from a VM to the hypervisor, is

much more expensive than restoring it, when returning back

to the VM from the hypervisor, due to the cost of reading

the VGIC register state.

Unlike on ARM, both x86 hypervisors spend a similar

amount of time transitioning from the VM to the hypervisor.

Since both KVM and Xen leverage the same x86 hardware

mechanism for transitioning between the VM and the hyper-

visor, they have similar performance. Both x86 hypervisors

run in root mode and run their VMs in non-root mode,

and switching between the two modes involves switching

a substantial portion of the CPU register state to the VMCS

in memory. Switching this state to memory is fast on x86,

because it is performed by hardware in the context of a trap

or as a result of executing a single instruction. In contrast,

ARM provides a separate CPU mode for the hypervisor with

separate registers, and ARM only needs to switch state to

memory when running a different execution context in EL1.

ARM can be much faster, as in the case of Xen ARM which

does its hypervisor work in EL2 and does not need to context

switch much register state, or it can be much slower, as in

the case of KVM ARM which context switches more register

state without the benefit of hardware support like x86.

The large difference in the cost of transitioning between

the VM and hypervisor between Type 1 and Type 2 hy-

pervisors results in Xen ARM being significantly faster at

handling interrupt related traps, because Xen ARM emulates

the ARM GIC interrupt controller directly in the hypervisor

running in EL2 as shown in Figure 2. In contrast, KVM

ARM emulates the GIC in the part of the hypervisor running

in EL1. Therefore, operations such as accessing registers

in the emulated GIC, sending virtual IPIs, and receiving

virtual interrupts are much faster on Xen ARM than KVM

ARM. This is shown in Table II in the measurements for the

Interrupt Controller trap and Virtual IPI microbenchmarks,

in which Xen ARM is faster than KVM ARM by roughly

the same difference as for the Hypercall microbenchmark.

However, Table II shows that for the remaining mi-
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crobenchmarks, Xen ARM does not enjoy a large perfor-

mance advantage over KVM ARM and in fact does worse

for some of the microbenchmarks. The reasons for this differ

from one microbenchmark to another: For the Virtual IRQ

Completion microbenchmark, both KVM ARM and Xen

ARM are very fast because the ARM hardware includes

support for completing interrupts directly in the VM without

trapping to the hypervisor. The microbenchmark runs much

faster on ARM than x86 because the latter has to trap to the

hypervisor. More recently, vAPIC support has been added

to x86 with similar functionality to avoid the need to trap

to the hypervisor so that newer x86 hardware with vAPIC

support should perform more comparably to ARM [12].

For the VM Switch microbenchmark, Xen ARM is only

slightly faster than KVM ARM because both hypervisor

implementations have to context switch the state between

the VM being switched out and the one being switched

in. Unlike the Hypercall microbenchmark where only KVM

ARM needed to context switch EL1 state and per VM EL2

state, in this case both KVM and Xen ARM need to do this,

and Xen ARM therefore does not directly benefit from its

faster VM-to-hypervisor transition. Xen ARM is still slightly

faster than KVM, however, because to switch between VMs,

Xen ARM simply traps to EL2 and performs a single context

switch of the EL1 state, while KVM ARM must switch the

EL1 state from the VM to the host OS and then again from

the host OS to the new VM. Finally, KVM ARM also has

to disable and enable traps and Stage-2 translation on each

transition, which Xen ARM does not have to do.

For the I/O Latency microbenchmarks, a surprising result

is that Xen ARM is slower than KVM ARM in both direc-

tions. These microbenchmarks measure the time from when

a network I/O event is initiated by a sender until the receiver

is notified, not including additional time spent transferring

data. I/O latency is an especially important metric for real-

time sensitive operations and many networking applications.

The key insight to understanding the results is to see that

Xen ARM does not benefit from its faster VM-to-hypervisor

transition mechanism in this case because Xen ARM must

switch between two separate VMs, Dom0 and a DomU, to

process network I/O. Type 1 hypervisors only implement a

limited set of functionality in the hypervisor directly, namely

scheduling, memory management, the interrupt controller,

and timers for Xen ARM. All other functionality, for ex-

ample network and storage drivers are implemented in the

special privileged VM, Dom0. Therefore, a VM performing

I/O has to communicate with Dom0 and not just the Xen

hypervisor, which means not just trapping to EL2, but also

going to EL1 to run Dom0.

I/O Latency Out is much worse on Xen ARM than KVM

ARM. When KVM ARM sends a network packet, it traps

to the hypervisor, context switching the EL1 state, and then

the host OS instance directly sends the data on the physical

network. Xen ARM, on the other hand, traps from the VM

to the hypervisor, which then signals a different VM, Dom0,

and Dom0 then sends the data on the physical network.

This signaling between VMs on Xen is slow for two main

reasons. First, because the VM and Dom0 run on different

physical CPUs, Xen must send a physical IPI from the CPU

running the VM to the CPU running Dom0. Second, Xen

actually switches from Dom0 to a special VM, called the

idle domain, when Dom0 is idling and waiting for I/O.

Thus, when Xen signals Dom0 to perform I/O on behalf of

a VM, it must perform a VM switch from the idle domain to

Dom0. We verified that changing the configuration of Xen to

pinning both the VM and Dom0 to the same physical CPU

or not specifying any pinning resulted in similar or worse

results than reported in Table II, so the qualitative results

are not specific to our configuration.

It is interesting to note that KVM x86 is much faster than

everything else on I/O Latency Out. KVM on both ARM

and x86 involve the same control path of transitioning from

the VM to the hypervisor. While the path is conceptually

similar to half of the path for the Hypercall microbenchmark,

the result for the I/O Latency Out microbenchmark is not

50% of the Hypercall cost on neither platform. The reason

is that for KVM x86, transitioning from the VM to the

hypervisor accounts for only about 40% of the Hypercall

cost, while transitioning from the hypervisor to the VM is

the majority of the cost (a few cycles are spent handling

the noop hypercall in the hypervisor). On ARM, it is much

more expensive to transition from the VM to the hypervisor

than from the hypervisor to the VM, because reading back

the VGIC state is expensive, as shown in Table III.

I/O Latency In behaves more similarly between Xen and

KVM on ARM because they perform similar low-level

operations. Xen traps from Dom0 running in EL1 to the

hypervisor running in EL2 and signals the receiving VM, the

reverse of the procedure described above, thereby sending

a physical IPI and switching from the idle domain to the

receiving VM in EL1. For KVM ARM, the Linux host OS

receives the network packet via VHOST on a separate CPU,

wakes up the receiving VM’s VCPU thread to run on another

CPU, thereby sending a physical IPI. The VCPU thread traps

to EL2, switches the EL1 state from the host to the VM,

then switches to the VM in EL1. The end result is that the

cost is similar across both hypervisors, with KVM being

slightly faster. While KVM ARM is slower on I/O Latency

In than I/O Latency Out because it performs more work on

the incoming path, Xen has similar performance on both

Latency I/O In and Latency I/O Out because it performs

similar low-level operations for both microbenchmarks.

V. APPLICATION BENCHMARK RESULTS

We next ran a number of real application benchmark

workloads to quantify how well the ARM virtualization

extensions support different hypervisor software designs in

the context of more realistic workloads. Table IV lists the
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Kernbench Compilation of the Linux 3.17.0 kernel using the allno-
config for ARM using GCC 4.8.2.

Hackbench hackbench [14] using Unix domain sockets and 100
process groups running with 500 loops.

SPECjvm2008 SPECjvm2008 [15] 2008 benchmark running several
real life applications and benchmarks specifically chosen
to benchmark the performance of the Java Runtime Envi-
ronment. We used 15.02 release of the Linaro AArch64
port of OpenJDK to run the the benchmark.

Netperf netperf v2.6.0 starting netserver on the server and
running with its default parameters on the client in three
modes: TCP RR, TCP STREAM, and TCP MAERTS,
measuring latency and throughput, respectively.

Apache Apache v2.4.7 Web server running ApacheBench
v2.3 on the remote client, which measures number of
handled requests per second serving the 41 KB index file
of the GCC 4.4 manual using 100 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark
v1.2.3 with its default parameters.

MySQL MySQL v14.14 (distrib 5.5.41) running SysBench
v.0.4.12 using the default configuration with 200 parallel
transactions.

Table IV: Application Benchmarks

application workloads we used, which include a mix of

widely-used CPU and I/O intensive benchmark workloads.

For workloads involving a client and a server, we ran

the client on a dedicated machine and the server on the

configuration being measured, ensuring that the client was

never saturated during any of our experiments. We ran these

workloads natively and on both KVM and Xen on both ARM

and x86, the latter to provide a baseline comparison.

Given the differences in hardware platforms, our focus

was not on measuring absolute performance [13], but rather

the relative performance differences between virtualized and

native execution on each platform. Figure 4 shows the

performance overhead of KVM and Xen on ARM and x86

compared to native execution on the respective platform. All

numbers are normalized to 1 for native performance, so that

lower numbers represent better performance. Unfortunately,

the Apache benchmark could not run on Xen x86 because

it caused a kernel panic in Dom0. We tried several versions

of Xen and Linux, but faced the same problem. We reported

this to the Xen developer community, and learned that this

may be a Mellanox network driver bug exposed by Xen’s

I/O model. We also reported the issue to the Mellanox driver

maintainers, but did not arrive at a solution.

Figure 4 shows that the application performance on KVM

and Xen on ARM and x86 is not well correlated with their

respective microbenchmark performance shown in Table II.

Xen ARM has by far the lowest VM-to-hypervisor transition

costs and the best performance for most of the microbench-

marks, yet its performance lags behind KVM ARM on many

of the application benchmarks. KVM ARM substantially

outperforms Xen ARM on the various Netperf benchmarks,

TCP STREAM, TCP MAERTS, and TCP RR, as well as

Apache and Memcached, and performs only slightly worse

on the rest of the application benchmarks. Xen ARM also

does generally worse than KVM x86. Clearly, the differences
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Figure 4: Application Benchmark Performance

in microbenchmark performance do not result in the same

differences in real application performance.

Xen ARM achieves its biggest performance gain versus

KVM ARM on Hackbench. Hackbench involves running

lots of threads that are sleeping and waking up, requiring

frequent IPIs for rescheduling. Xen ARM performs virtual

IPIs much faster than KVM ARM, roughly a factor of

two. Despite this microbenchmark performance advantage

on a workload that performs frequent virtual IPIs, the

resulting difference in Hackbench performance overhead

is small, only 5% of native performance. Overall, across

CPU-intensive workloads such as Kernbench, Hackbench

and SPECjvm2008, the performance differences among the

different hypervisors across different architectures is small.

Figure 4 shows that the largest differences in performance

are for the I/O-intensive workloads. We first take a closer

look at the Netperf results. Netperf TCP RR is an I/O

latency benchmark, which sends a 1 byte packet from a

client to the Netperf server running in the VM, and the

Netperf server sends the packet back to the client, and the

process is repeated for 10 seconds. For the Netperf TCP RR

benchmark, both hypervisors show high overhead compared

to native performance, but Xen is noticeably worse than

KVM. To understand why, we analyzed the behavior of

TCP RR in further detail by using tcpdump [16] to capture

timestamps on incoming and outgoing packets at the data

link layer. We modified Linux’s timestamping function to

use the ARM architected counter, and took further steps to

ensure that the counter values were synchronized across all

PCPUs, VMs, and the hypervisor. This allowed us to analyze

the latency between operations happening in the VM and the

host. Table V shows the detailed measurements.

Table V shows that the time per transaction increases

significantly from 41.8 μs when running natively to 86.3 μs
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Native KVM Xen
Trans/s 23,911 11,591 10,253
Time/trans (μs) 41.8 86.3 97.5
Overhead (μs) - 44.5 55.7
send to recv (μs) 29.7 29.8 33.9
recv to send (μs) 14.5 53.0 64.6
recv to VM recv (μs) - 21.1 25.9
VM recv to VM send (μs) - 16.9 17.4
VM send to send (μs) - 15.0 21.4

Table V: Netperf TCP RR Analysis on ARM

and 97.5 μs for KVM and Xen, respectively. The resulting

overhead per transaction is 44.5 μs and 55.7 μs for KVM and

Xen, respectively. To understand the source of this overhead,

we decompose the time per transaction into separate steps.

send to recv is the time between sending a packet from the

physical server machine until a new response is received by

the client, which is the time spent on the physical wire plus

the client processing time. recv to send is the time spent at

the physical server machine to receive a packet and send

back a response, including potentially passing through the

hypervisor and the VM in the virtualized configurations.

send to recv remains the same for KVM and native, be-

cause KVM does not interfere with normal Linux operations

for sending or receiving network data. However, send to recv
is slower on Xen, because the Xen hypervisor adds latency

in handling incoming network packets. When a physical

network packet arrives, the hardware raises an IRQ, which is

handled in the Xen hypervisor, which translates the incoming

physical IRQ to a virtual IRQ for Dom0, which runs the

physical network device driver. However, since Dom0 is

often idling when the network packet arrives, Xen must first

switch from the idle domain to Dom0 before Dom0 can

receive the incoming network packet, similar to the behavior

of the I/O Latency benchmarks described in Section IV.

Since almost all the overhead is on the server for both

KVM and Xen, we further decompose the recv to send time

at the server into three components; the time from when the

physical device driver receives the packet until it is delivered

in the VM, recv to VM recv, the time from when the VM

receives the packet until it sends a response, VM recv to VM
send, and the time from when the VM delivers the response

to the physical device driver, VM send to send. Table V

shows that both KVM and Xen spend a similar amount of

time receiving the packet inside the VM until being able to

send a reply, and that this VM recv to VM send time is only

slightly more time than the recv to send time spent when

Netperf is running natively to process a packet. This suggests

that the dominant overhead for both KVM and Xen is due

to the time required by the hypervisor to process packets,

the Linux host for KVM and Dom0 for Xen.

Table V also shows that Xen spends noticeably more time

than KVM in delivering packets between the physical device

driver and the VM. KVM only delays the packet on recv
to VM recv and VM send to send by a total of 36.1 μs,

where Xen delays the packet by 47.3 μs, an extra 11.2 μs.

There are two main reasons why Xen performs worse. First,

Xen’s I/O latency is higher than KVM’s as measured and

explained by the I/O Latency In and Out microbenchmarks

in Section IV. Second, Xen does not support zero-copy I/O,

but instead must map a shared page between Dom0 and the

VM using the Xen grant mechanism, and must copy data

between the memory buffer used for DMA in Dom0 and

the granted memory buffer from the VM. Each data copy

incurs more than 3 μs of additional latency because of the

complexities of establishing and utilizing the shared page

via the grant mechanism across VMs, even though only a

single byte of data needs to be copied.

Although Xen ARM can transition between the VM and

hypervisor more quickly than KVM, Xen cannot utilize this

advantage for the TCP RR workload, because Xen must

engage Dom0 to perform I/O on behalf of the VM, which

results in several VM switches between idle domains and

Dom0 or DomU, and because Xen must perform expensive

page mapping operations to copy data between the VM

and Dom0. This is a direct consequence of Xen’s software

architecture and I/O model based on domains and a strict I/O

isolation policy. Xen ends up spending so much time com-

municating between the VM and Dom0 that it completely

dwarfs its low Hypercall cost for the TCP RR workload

and ends up having more overhead than KVM ARM, due

to Xen’s software architecture and I/O model in particular.

The hypervisor software architecture is also a dominant

factor in other aspects of the Netperf results. For the Netperf

TCP STREAM benchmark, KVM has almost no overhead

for x86 and ARM while Xen has more than 250% over-

head. The reason for this large difference in performance

is again due to Xen’s lack of zero-copy I/O support, in

this case particularly on the network receive path. The

Netperf TCP STREAM benchmark sends large quantities

of data from a client to the Netperf server in the VM. Xen’s

Dom0, running Linux with the physical network device

driver, cannot configure the network device to DMA the

data directly into guest buffers, because Dom0 does not have

access to the VM’s memory. When Xen receives data, it

must configure the network device to DMA the data into a

Dom0 kernel memory buffer, signal the VM for incoming

data, let Xen configure a shared memory buffer, and finally

copy the incoming data from the Dom0 kernel buffer into

the virtual device’s shared buffer. KVM, on the other hand,

has full access to the VM’s memory and maintains shared

memory buffers in the Virtio rings [7], such that the network

device can DMA the data directly into a guest-visible buffer,

resulting in significantly less overhead.

Furthermore, previous work [17] and discussions with the

Xen maintainers confirm that supporting zero copy on x86

is problematic for Xen given its I/O model because doing

so requires signaling all physical CPUs to locally invalidate

TLBs when removing grant table entries for shared pages,
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which proved more expensive than simply copying the

data [18]. As a result, previous efforts to support zero copy

on Xen x86 were abandoned. Xen ARM lacks the same

zero copy support because the Dom0 network backend driver

uses the same code as on x86. Whether zero copy support

for Xen can be implemented efficiently on ARM, which

has hardware support for broadcast TLB invalidate requests

across multiple PCPUs, remains to be investigated.

For the Netperf TCP MAERTS benchmark, Xen also has

substantially higher overhead than KVM. The benchmark

measures the network transmit path from the VM, the

converse of the TCP STREAM benchmark which measured

the network receive path to the VM. It turns out that the Xen

performance problem is due to a regression in Linux intro-

duced in Linux v4.0-rc1 in an attempt to fight bufferbloat,

and has not yet been fixed beyond manually tuning the

Linux TCP configuration in the guest OS [19]. We confirmed

that using an earlier version of Linux or tuning the TCP

configuration in the guest using sysfs significantly reduced

the overhead of Xen on the TCP MAERTS benchmark.

Other than the Netperf workloads, the application work-

loads with the highest overhead were Apache and Mem-

cached. We found that the performance bottleneck for KVM

and Xen on ARM was due to network interrupt processing

and delivery of virtual interrupts. Delivery of virtual inter-

rupts is more expensive than handling physical IRQs on

bare-metal, because it requires switching from the VM to

the hypervisor, injecting a virtual interrupt to the VM, then

switching back to the VM. Additionally, Xen and KVM both

handle all virtual interrupts using a single VCPU, which,

combined with the additional virtual interrupt delivery cost,

fully utilizes the underlying PCPU. We verified this by

distributing virtual interrupts across multiple VCPUs, which

causes performance overhead to drop on KVM from 35% to

14% on Apache and from 26% to 8% on Memcached, and on

Xen from 84% to 16% on Apache and from 32% to 9% on

Memcached. Furthermore, we ran the workload natively with

all physical interrupts assigned to a single physical CPU,

and observed the same native performance, experimentally

verifying that delivering virtual interrupts is more expensive

than handling physical interrupts.

In summary, while the VM-to-hypervisor transition cost

for a Type 1 hypervisor like Xen is much lower on ARM

than for a Type 2 hypervisor like KVM, this difference

is not easily observed for the application workloads. The

reason is that Type 1 hypervisors typically only support

CPU, memory, and interrupt virtualization directly in the

hypervisors. CPU and memory virtualization has been highly

optimized directly in hardware and, ignoring one-time page

fault costs at start up, is performed largely without the

hypervisor’s involvement. That leaves only interrupt virtual-

ization, which is indeed much faster for Type 1 hypervisor

on ARM, confirmed by the Interrupt Controller Trap and

Virtual IPI microbenchmarks shown in Section IV. While

this contributes to Xen’s slightly better Hackbench perfor-

mance, the resulting application performance benefit overall

is modest.

However, when VMs perform I/O operations such as

sending or receiving network data, Type 1 hypervisors like

Xen typically offload such handling to separate VMs to avoid

having to re-implement all device drivers for the supported

hardware and to avoid running a full driver and emulation

stack directly in the Type 1 hypervisor, which would signif-

icantly increase the Trusted Computing Base and increase

the attack surface of the hypervisor. Switching to a different

VM to perform I/O on behalf of the VM has very similar

costs on ARM compared to a Type 2 hypervisor approach

of switching to the host on KVM. Additionally, KVM on

ARM benefits from the hypervisor having privileged access

to all physical resources, including the VM’s memory, and

from being directly integrated with the host OS, allowing

for optimized physical interrupt handling, scheduling, and

processing paths in some situations.

Despite the inability of both KVM and Xen to leverage

the potential fast path of trapping from a VM running in EL1

to the hypervisor in EL2 without the need to run additional

hypervisor functionality in EL1, our measurements show that

both KVM and Xen on ARM can provide virtualization

overhead similar to, and in some cases better than, their

respective x86 counterparts.

VI. ARCHITECTURE IMPROVEMENTS

To make it possible for modern hypervisors to achieve

low VM-to-hypervisor transition costs on real application

workloads, some changes needed to be made to the ARM

hardware virtualization support. Building on our experiences

with the design, implementation, and performance mea-

surement of KVM ARM and working in conjunction with

ARM, a set of improvements have been made to bring the

fast VM-to-hypervisor transition costs possible in limited

circumstances with Type 1 hypervisors, to a broader range

of application workloads when using Type 2 hypervisors.

These improvements are the Virtualization Host Extensions

(VHE), which are now part of a new revision of the ARM

64-bit architecture, ARMv8.1 [20]. VHE allows running an

OS designed to run in EL1 to run in EL2 without substantial

modifications to the OS source code. We show how this

allows KVM ARM and its Linux host kernel to run entirely

in EL2 without substantial modifications to Linux.

VHE is provided through the addition of a new control

bit, the E2H bit, which is set at system boot when installing

a Type 2 hypervisor that uses VHE. If the bit is not set,

ARMv8.1 behaves the same as ARMv8 in terms of hardware

virtualization support, preserving backwards compatibility

with existing hypervisors. When the bit is set, VHE enables

three main features.

First, VHE expands EL2, adding additional physical regis-

ter state to the CPU, such that any register and functionality
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available in EL1 is also available in EL2. For example, EL1

has two registers, TTBR0 EL1 and TTBR1 EL1, the first

used to look up the page tables for virtual addresses (VAs) in

the lower VA range, and the second in the upper VA range.

This provides a convenient and efficient method for splitting

the VA space between userspace and the kernel. However,

without VHE, EL2 only has one page table base register,

TTBR0 EL2, making it problematic to support the split VA

space of EL1 when running in EL2. With VHE, EL2 gets

a second page table base register, TTBR1 EL2, making it

possible to support split VA space in EL2 in the same way as

provided in EL1. This enables a Type 2 hypervisor integrated

with a host OS to support a split VA space in EL2, which is

necessary to run the host OS in EL2 so it can manage the

VA space between userspace and the kernel.

Second, VHE provides a mechanism to access the extra

EL2 register state transparently. Simply providing extra EL2

registers is not sufficient to run unmodified OSes in EL2,

because existing OSes are written to access EL1 registers.

For example, Linux is written to use TTBR1 EL1, which

does not affect the translation system running in EL2.

Providing the additional register TTBR1 EL2 would still

require modifying Linux to use the TTBR1 EL2 instead of

the TTBR1 EL1 when running in EL2 vs. EL1, respectively.

To avoid forcing OS vendors to add this extra level of com-

plexity to the software, VHE allows unmodified software to

execute in EL2 and transparently access EL2 registers using

the EL1 system register instruction encodings. For example,

current OS software reads the TTBR1 EL1 register with

the instruction mrs x1, ttbr1_el1. With VHE, the

software still executes the same instruction, but the hardware

actually accesses the TTBR1 EL2 register. As long as the

E2H bit is set, accesses to EL1 registers performed in EL2

actually access EL2 registers, transparently rewriting register

accesses to EL2, as described above. A new set of special

instructions are added to access the EL1 registers in EL2,

which the hypervisor can use to switch between VMs, which

will run in EL1. For example, if the hypervisor wishes to

access the guest’s TTBR1 EL1, it will use the instruction

mrs x1, ttb1_el21.

Third, VHE expands the memory translation capabilities

of EL2. In ARMv8, EL2 and EL1 use different page table

formats so that software written to run in EL1 must be

modified to run in EL2. In ARMv8.1, the EL2 page table

format is now compatible with the EL1 format when the

E2H bit is set. As a result, an OS that was previously run in

EL1 can now run in EL2 without being modified because it

can use the same EL1 page table format.

Figure 5 shows how Type 1 and Type 2 hypervisors map to

the architecture with VHE. Type 1 hypervisors do not set the

E2H bit introduced with VHE, and EL2 behaves exactly as in

ARMv8 and described in Section II. Type 2 hypervisors set

the E2H bit when the system boots, and the host OS kernel

runs exclusively in EL2, and never in EL1. The Type 2

Type 1: E2H Bit Clear Type 2: E2H Bit Set

Xen Hypervisor Host Kernel and KVM

Apps

syscalls
& traps

EL 0 (User)

EL 1 (Kernel)

EL 2 (Hypervisor)

VM VM

Figure 5: Virtualization Host Extensions (VHE)

hypervisor kernel can run unmodified in EL2, because VHE

provides an equivalent EL2 register for every EL1 register

and transparently rewrites EL1 register accesses from EL2

to EL2 register accesses, and because the page table formats

between EL1 and EL2 are now compatible. Transitions from

host userspace to host kernel happen directly from EL0 to

EL2, for example to handle a system call, as indicated by

the arrows in Figure 5. Transitions from the VM to the

hypervisor now happen without having to context switch

EL1 state, because EL1 is not used by the hypervisor.

ARMv8.1 differs from the x86 approach in two key ways.

First, ARMv8.1 introduces more additional hardware state so

that a VM running in EL1 does not need to save a substantial

amount of state before switching to running the hypervisor

in EL2 because the EL2 state is separate and backed by ad-

ditional hardware registers. This minimizes the cost of VM-

to-hypervisor transitions because trapping from EL1 to EL2

does not require saving and restoring state beyond general

purpose registers to and from memory. In contrast, recall

that the x86 approach adds CPU virtualization support by

adding root and non-root mode as orthogonal concepts from

the CPU privilege modes, but does not introduce additional

hardware register state like ARM. As a result, switching

between root and non-root modes requires transferring state

between hardware registers and memory. The cost of this is

ameliorated by implementing the state transfer in hardware,

but while this avoids the need to do additional instruction

fetch and decode, accessing memory is still expected to be

more expensive than having extra hardware register state.

Second, ARMv8.1 preserves the RISC-style approach of

allowing software more fine-grained control over which state

needs to be switched for which purposes instead of fixing

this in hardware, potentially making it possible to build

hypervisors with lower overhead, compared to x86.

A Type 2 hypervisor originally designed for ARMv8 must

be modified to benefit from VHE. A patch set has been

developed to add VHE support to KVM ARM. This involves

rewriting parts of the code to allow run-time adaptations of

the hypervisor, such that the same kernel binary can run

on both legacy ARMv8 hardware and benefit from VHE-

enabled ARMv8.1 hardware. The code to support VHE has

been developed using ARM software models as ARMv8.1

hardware is not yet available. We were therefore not able to

evaluate the performance of KVM ARM using VHE, but our
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findings in Sections IV and V show that this addition to the

hardware design could have a noticeable positive effect on

KVM ARM performance, potentially improving Hypercall

and I/O Latency Out performance by more than an order

of magnitude, improving more realistic I/O workloads by

10% to 20%, and yielding superior performance to a Type

1 hypervisor such as Xen which must still rely on Dom0

running in EL1 for I/O operations.

VII. RELATED WORK

Virtualization goes back to the 1970s [8], but saw a resur-

gence in the 2000s with the emergence of x86 hypervisors

and later x86 hardware virtualization support [5], [6], [4].

Much work has been done on analyzing and improving

the performance of x86 virtualization [21], [17], [22], [23],

[24], [25], [26], [27], [28]. While some techniques such as

nested page tables have made their way from x86 to ARM,

much of the x86 virtualization work has limited applicability

to ARM for two reasons. First, earlier work focused on

techniques to overcome the absence of x86 hardware vir-

tualization support. For example, studies of paravirtualized

VM performance [17] are not directly applicable to systems

optimized with hardware virtualization support.

Second, later work based on x86 hardware virtualization

support leverages hardware features that are in many cases

substantially different from ARM. For example, ELI [24]

reduces the overhead of device passthrough I/O coming from

interrupt processing by applying an x86-specific technique

to directly deliver physical interrupts to VMs. This technique

does not work on ARM, as ARM does not use Interrupt De-

scriptor Tables (IDTs), but instead reads the interrupt number

from a single hardware register and performs lookups of

interrupt service routines from a strictly software-managed

table. In contrast, our work focuses on ARM-specific hard-

ware virtualization support and its performance on modern

hypervisors running multiprocessor VMs.

Full-system virtualization of the ARM architecture is a

relatively unexplored research area. Early approaches were

software only, could not run unmodified guest OSes, and

often suffered from poor performance [29], [30], [31], [32].

More recent approaches leverage ARM hardware virtualiza-

tion support. The earliest study of ARM hardware virtualiza-

tion support was based on a software simulator and a simple

hypervisor without SMP support, but due to the lack of

hardware or a cycle-accurate simulator, no real performance

evaluation was possible [33].

KVM ARM was the first hypervisor to use ARM hardware

virtualization support to run unmodified guest OSes on

multi-core hardware [2], [34]. We expand on our previous

work by (1) measuring virtualization performance on ARM

server hardware for the first time, (2) providing the first

performance comparison between KVM and Xen on both

ARM and x86, (3) quantifying the true cost of split-mode

virtualization due to the need to save and restore more

state to memory when transitioning from a VM to the

hypervisor compared to Type 1 hypervisors on ARM, and

(4) identifying the root causes of overhead for KVM and

Xen on ARM for real application workloads including those

involving network I/O.

VIII. CONCLUSIONS

We present the first study of ARM virtualization per-

formance on server hardware, including multi-core mea-

surements of the two main ARM hypervisors, KVM and

Xen. We introduce a suite of microbenchmarks to measure

common hypervisor operations on multi-core systems. Using

this suite, we show that ARM enables Type 1 hypervisors

such as Xen to transition between a VM and the hypervisor

much faster than on x86, but that this low transition cost does

not extend to Type 2 hypervisors such as KVM because they

cannot run entirely in the EL2 CPU mode ARM designed

for running hypervisors. While this fast transition cost is

useful for supporting virtual interrupts, it does not help

with I/O performance because a Type 1 hypervisor like

Xen has to communicate with I/O backends in a special

Dom0 VM, requiring more complex interactions than simply

transitioning to and from the EL2 CPU mode.

We show that current hypervisor designs cannot leverage

ARM’s potentially fast VM-to-hypervisor transition cost in

practice for real application workloads. KVM ARM actually

exceeds the performance of Xen ARM for most real appli-

cation workloads involving I/O. This is due to differences

in hypervisor software design and implementation that play

a larger role than how the hardware supports low-level

hypervisor operations. For example, KVM ARM easily

provides zero copy I/O because its host OS has full access

to all of the VM’s memory, where Xen enforces a strict

I/O isolation policy resulting in poor performance despite

Xen’s much faster VM-to-hypervisor transition mechanism.

We show that ARM hypervisors have similar overhead to

their x86 counterparts on real applications. Finally, we show

how improvements to the ARM architecture may allow

Type 2 hypervisors to bring ARM’s fast VM-to-hypervisor

transition cost to real application workloads involving I/O.
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